Vol. 63
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-01-18
Omega-Shaped Geometries of Reflectarray Resonant Elements with Low Cross-Polarization for Wideband and Dual-Polarization Use
By
Progress In Electromagnetics Research M, Vol. 63, 217-225, 2018
Abstract
This paper presents low cross-polarization single-layer reflectarray elements for dualpolarization use. These elements have an omega-shaped symmetrical structure to realize the crosspolarization reduction and also provide parallel linear reflection-phase properties with almost the same slop characteristics for the frequency, thereby achieving the desirable reflection phase range more than 360˚ over the wide frequency range. To verify effectiveness of the proposed elements, a reflectarray antenna with an offset feed is constructed by them, and wideband frequency characteristics are also confirmed at Ku-band numerically and experimentally.
Citation
Daichi Higashi, Hiroyuki Deguchi, and Mikio Tsuji, "Omega-Shaped Geometries of Reflectarray Resonant Elements with Low Cross-Polarization for Wideband and Dual-Polarization Use," Progress In Electromagnetics Research M, Vol. 63, 217-225, 2018.
doi:10.2528/PIERM17101802
References

1. Huang, J. and J. A. Encinar, Reflectarray Antennas, Wiley, New Jersey, 2007.
doi:10.1002/9780470178775

2. Huang, J., V. Feria, and H. Fang, "Improvement of the three-meter Ka-band inflatable reflectarray antenna," IEEE Int. Symp. Antennas Propagat., Vol. 1, 122-125, Jul. 2001.

3. Dietlein, C., A. Hedden, and D. Wikner, "Digital reflectarray considerations for terrestrial millimeter-wave imaging," Antennas and Wireless Propagation Letters, IEEE, Vol. 11, 272-275, Mar. 2012.
doi:10.1109/LAWP.2012.2189545

4. Li, L., Q. Chen, Q. Yuan, K. Sawaya, T. Maruyama, T. Furuno, and S. Uebayashi, "Frequency selective reflectarray using crossed-dipole elements with square loops for wireless communication applications," IEEE Trans. Antennas Propag., Vol. 59, No. 1, 89-98, Jan. 2011.
doi:10.1109/TAP.2010.2090455

5. David, F., M. Pozar, S. D. Targonski, and H. D. Syrigos, "Design of millimeter wave microstrip reflectarrays," IEEE Trans. Antennas Propag., Vol. 45, No. 2, 287-296, Feb. 1997.
doi:10.1109/8.560348

6. Qin, P., Y. J. Guo, and A. R.Weily, "Broadband reflectarray antenna using subwavelength elements based on double square meander-line rings," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 378-383, Jan. 2016.
doi:10.1109/TAP.2015.2502978

7. Encinar, J., "Design of two-layer printed reflectarrays using patches of variable size," IEEE Trans. Antennas Propag., Vol. 49, No. 10, 1403-1410, Oct. 2001.
doi:10.1109/8.954929

8. Florencio, R., J. Encinar, R. Boix, and G. Perez-Palomino, "Dual-polarisation reflectarray made of cells with two orthogonal sets of parallel dipoles for bandwidth and cross-polarisation improvement," IET Microw. Antennas Propag., Vol. 8, 1389-1397, Jun. 2014.
doi:10.1049/iet-map.2014.0202

9. Han, C., Y. Zhang, and Q. Yang, "A broadband reflectarray antenna using triple gapped rings with attached phase-delay lines," IEEE Trans. Antennas Propag., Vol. 65, No. 5, 2713-2717, May 2017.
doi:10.1109/TAP.2017.2679493

10. Deguchi, H., T. Idogawa, M. Tsuji, and H. Shigesawa, "Offset reflectarrays with dense microstrips for wideband use," Proc. of ISAP 2005, Vol. 1, 229-232, Aug. 2005.

11. Sakita, S., H. Deguchi, and M. Tsuji, "Single-layer microstrip reflectarray based on dual-resonance behavior," Proceedings of International Symposium on Antennas and Propagation, 1290-1293, 2007.

12. Mayumi, K., H. Deguchi, and M. Tsuji, "Wideband single-layer microstrip reflectarray based on multiple-resonance behavior," IEEE Antennas Propagat. Symp. Digest, No. s432p4, 2008.

13. Toyoda, T., H. Deguchi, M. Tsuji, and T. Nishimura, "Reflectarray elements based on two-resonance behavior for dual-polarization use," Proceedings of International Symposium on Antennas and Propagation, [FrP2-15] A09_1003, 2011.

14. Toyoda, T., D. Higashi, H. Deguchi, and M. Tsuji, "Broadband reflectarray with convex strip elements for dual-polarization use," Proceedings of International Symposium on Electromagnetic Theory, 2013.

15. Higashi, D., H. Deguchi, and M. Tsuji, "Omega-shaped resonant elements for dual-polarization and wideband reflectarray," IEEE Antennas Propagat. Symp. Digest, 809-810, 2014.

16. Wu, T. K., Frequency Selective Surface and Grid Array, Wiley, New York, 1995.

17. Mittra, R., C. H. Chan, and T. Cwik, "Techniques for analyzing frequency selective surfaces - A review," Proc. IEEE, Vol. 76, No. 12, 1593-1615, Dec. 1988.
doi:10.1109/5.16352

18. Asada, T., H. Deguchi, and M. Tsuji, "Optimization of arbitrarily shaped elements suppressing cross-polarization component in reflectarray," IEICE Technical Report, EMT-13-148, Nov. 2013.

19. Morabito, A. F., A. R. Lagana, G. Sorbell, and T. Isernia, "Mask-constrained power synthesis of maximally sparse linear arrays through a compressive-sensing-driven strategy," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 10, 1384-1396, 2015.
doi:10.1080/09205071.2015.1046561

20. Silver, S., "Microwave antenna theory and design," IET, 1949.