Vol. 69

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-06-04

Comparative Study of the Meissner and Skin Effects in Superconductors

By Jacob Szeftel, Nicolas Sandeau, and Antoine Khater
Progress In Electromagnetics Research M, Vol. 69, 69-76, 2018
doi:10.2528/PIERM18012805

Abstract

The Meissner effect is studied by using an approach based on Newton and Maxwell's equations. The objective is to assess the relevance of London's equation and shed light on the connection between the Meissner and skin effects. The properties of a superconducting cylinder, cooled in a magnetic field, are accounted for within the same framework. The radial Hall effect is predicted. The energy, associated with the Meissner effect, is calculated and compared with the binding energy of the superconducting phase with respect to the normal one.

Citation


Jacob Szeftel, Nicolas Sandeau, and Antoine Khater, "Comparative Study of the Meissner and Skin Effects in Superconductors," Progress In Electromagnetics Research M, Vol. 69, 69-76, 2018.
doi:10.2528/PIERM18012805
http://www.jpier.org/PIERM/pier.php?paper=18012805

References


    1. Meissner, W. and R. Ochsenfeld, "Ein neuer Effekt bei Eintritt der Supraleitfaehigkeit," Naturwiss., Vol. 21, 787, 1933.
    doi:10.1007/BF01504252

    2. Ashcroft, N. W. and N. D. Mermin, Solid State Physics, Saunders College, 1976.

    3. De Gennes, P. G., Superconductivity of Metals and Alloys, Addison-Wesley, Reading, MA, 1989.

    4. Schrieffer, J. R., Theory of Superconductivity, Addison-Wesley, 1993.

    5. London, F., Superfluids, Vol. 1, Wiley, 1950.

    6. Pippard, A. B., "The surface impedance of superconductors and normal metals at high frequencies," Proc. Roy. Soc. A, Vol. 203, 98, 1950.
    doi:10.1098/rspa.1950.0128

    7. Parks, R. D., Superconductivity, CRC Press, 1969.

    8. Edwards, W. F., "Classical derivation of the London equations," Phys. Rev. Lett., Vol. 47, 1863, 1981.
    doi:10.1103/PhysRevLett.47.1863

    9. Essen, H. and M. Fiolhais, "Meissner effect, diamagnetism, and classical physics: A review," Am. J. Phys., Vol. 80, 164, 2012.
    doi:10.1119/1.3662027

    10. Prytz, K. A., "Meissner effect in classical physics," Progress In Electromagnetics Research M, Vol. 64, 1-7, 2018.

    11. Bardeen, J., L. N. Cooper, and J. R. Schrieffer, "Theory of superconductivity," Phys. Rev., Vol. 108, 1175, 1957.
    doi:10.1103/PhysRev.108.1175

    12. Cooper, L. N., "Bound electron pairs in a degenerate fermi gas," Phys. Rev., Vol. 104, 1189, 1956.
    doi:10.1103/PhysRev.104.1189

    13. Henyey, F. S., "Distinction between a perfect conductor and a superconductor," Phys. Rev. Lett., Vol. 49, 416, 1982.
    doi:10.1103/PhysRevLett.49.416

    14. Hashimoto, K., et al., "A sharp peak of the zero-temperature penetration depth at optimal composition in BaFe2(As1−xPx)2," Science, Vol. 336, 1554, 2012.
    doi:10.1126/science.1219821

    15. Gordon, R. T., et al., "Doping evolution of the absolute value of the London penetration depth and superfluid density in single crystals of Ba(Fe1−xCox)2As2," Phys. Rev. B, Vol. 82, 054507, 2010.
    doi:10.1103/PhysRevB.82.054507

    16. Jackson, J. D., Classical Electrodynamics, John Wiley, 1998.

    17. Born, M. and E. Wolf, Principles of Optics, Cambridge University Press, 1999.
    doi:10.1017/CBO9781139644181

    18. Szeftel, J., N. Sandeau, and A. Khater, "Study of the skin effect in superconducting materials," Phys. Lett. A, Vol. 381, 1525, 2017.
    doi:10.1016/j.physleta.2017.02.051

    19. Landau, L. D. and E. M. Lifshitz, Statistical Physics, Pergamon Press, London, 1959.