Vol. 74

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-10-14

Study of Load Characteristics in Wireless Power Transfer System with Ferrite Core

By Meng Wang, Jing Feng, Minghui Shen, and Yanyan Shi
Progress In Electromagnetics Research M, Vol. 74, 137-145, 2018
doi:10.2528/PIERM18081609

Abstract

For wireless power transfer via magnetic resonant coupling (MRC-WPT), magnetic coupling between resonant coils can be greatly enhanced when a ferrite core is introduced inside the coils. Based on the equivalent circuit model of wireless power transfer system, transfer characteristics of the MRC-WPT system with air resonant coils and a ferrite core are respectively analyzed in this paper. The influence mechanism of the load on the power transfer efficiency is investigated. Also, the requirement of load for improving transfer efficiency is derived when adding the ferrite core to the system. The numerical simulation and experiment result indicate that the transmission efficiency in the MRC-WPT system with ferrite core is higher than that in the counterpart with air resonant coils in the whole transfer region when the load is larger than the maximal critical load. In addition, for different transfer distances, the system efficiency for the system using the ferrite core tends to become lower than that in the air coil system when the load is smaller than the critical load.

Citation


Meng Wang, Jing Feng, Minghui Shen, and Yanyan Shi, "Study of Load Characteristics in Wireless Power Transfer System with Ferrite Core," Progress In Electromagnetics Research M, Vol. 74, 137-145, 2018.
doi:10.2528/PIERM18081609
http://www.jpier.org/PIERM/pier.php?paper=18081609

References


    1. Shinohara, N., "The wireless power transmission: inductive coupling, radio wave, and resonance coupling," Wiley Interdisciplinary Reviews: Energy and Environment, Vol. 1, 337-346, 2012.
    doi:10.1002/wene.43

    2. Parise, M. and G. Antonini, "On the inductive coupling between two parallel thin-wire circular loop antennas," IEEE Transactions on Electromagnetic Compatibility, Vol. 1, 1865-1872, 2018.
    doi:10.1109/TEMC.2018.2790265

    3. Casanova, J. J., Z. N. Low, and J. Lin, "A loosely coupled planar wireless power system for multiple receivers," IEEE Transactions on Industrial Electronics, Vol. 56, 3060-3068, 2009.
    doi:10.1109/TIE.2009.2023633

    4. Jiang, C., K. T. Chau, W. Han, and W. Liu, "Development of multilayer rectangular coils for multiple-receiver multiple-frequency wireless power transfer," Progress In Electromagnetics Research, Vol. 163, 15-24, 2018.

    5. Kim, J. G., G. Wei, M. H. Kim, J. Y. Jong, and C. Zhu, "A comprehensive study on composite resonant circuit-based wireless power transfer systems," IEEE Trans. Ind. Electron., Vol. 65, No. 6, 4670-4680, 2018.
    doi:10.1109/TIE.2017.2772207

    6. Wang, M., J. Feng, Y. Fan, M. Shen, J. Liang, and Y. Shi, "A novel planar wireless power transfer system with distance-insensitive characteristics," Progress In Electromagnetics Research Letters, Vol. 76, 13-19, 2018.

    7. Li, C. J. and H. Ling, "Investigation of wireless power transfer using planarized, capacitor-loaded coupled loops," Progress In Electromagnetics Research, Vol. 148, 223-231, 2014.
    doi:10.2528/PIER14071705

    8. Fan, Y., L. Li, S. Yu, C. Zhu, and C. H. Liang, "Experimental study of efficient wireless power transfer system integrating with highly sub-wavelength metamaterials," Progress In Electromagnetics Research, Vol. 141, 769-784, 2013.
    doi:10.2528/PIER13061711

    9. Zhong, W. X. and S. Y. R. Hui, "Maximum energy efficiency operation of series-series resonant wireless power transfer systems using ON-OFF keying modulation," IEEE Trans. Power Electron., Vol. 33, No. 4, 3595-3603, 2018.
    doi:10.1109/TPEL.2017.2709341

    10. Zhang, J., X. Yuan, C.Wang, and Y. He, "Comparative analysis of two-coil and three-coil structures for wireless power transfer," IEEE Trans. Power Electron., Vol. 32, No. 1, 341-352, 2017.
    doi:10.1109/TPEL.2016.2526780

    11. Kim, J., W. S. Choi, and J. Jeong, "Loop switching technique for wireless power transfer using magnetic resonance coupling," Progress In Electromagnetics Research, Vol. 138, 197-209, 2013.
    doi:10.2528/PIER13012118

    12. Lee, S. B., S. Ahn, and I. G. Jang, "Simulation-based feasibility study on the wireless charging railway system with a ferriteless primary module," IEEE Trans. Veh. Technol., Vol. 64, No. 2, 1004-1010, 2017.
    doi:10.1109/TVT.2016.2565703

    13. Tran, D. H., V. B. Vu, and W. Choi, "Design of a high-efficiency wireless power transfer system with intermediate coils for the On-Board chargers of electric vehicles," IEEE Trans. Power Electron., Vol. 33, No. 1, 175-187, 2018.
    doi:10.1109/TPEL.2017.2662067

    14. Kong, S., et al., "An investigation of electromagnetic radiated emission and interference from multicoil wireless power transfer systems using resonant magnetic field coupling," IEEE Trans. on Micro. Theory Techn., Vol. 63, No. 3, 833-846, 2015.
    doi:10.1109/TMTT.2015.2392096

    15. Liu, X. C. and G. F. Wang, "A novel wireless power transfer system with double intermediate resonant coils," IEEE Trans. Ind. Electron., Vol. 63, No. 4, 2174-2180, 2016.

    16. Hu, H. and S. V. Georgakopoulos, "Multiband and broadband wireless power transfer systems using the conformal strongly coupled magnetic resonance method," IEEE Trans. Ind. Electron., Vol. 64, No. 5, 3595-3607, 2017.
    doi:10.1109/TIE.2016.2569459

    17. Wang, M., J. Feng, Y. Shi, and M. Shen, "Demagnetization weakening and magnetic field concentration with ferrite core characterization for efficient wireless power transfer," IEEE Trans. Ind. Electron., to be published. DOI 10.1109/TIE.2018.2840485.

    18. Zhang, W., C. J.White, M. A. Abraham, and C. C. Mi, "Loosely coupled transformer structure and interoperability study for EV wireless charging systems," IEEE Trans. Power Electron., Vol. 30, No. 11, 6356-6367, 2015.
    doi:10.1109/TPEL.2015.2433678

    19. Wang, S., D. G. Dorrell, Y. Guo, and M. F. Hsieh, "Inductive charging coupler with assistive coils," IEEE Trans. Magn., Vol. 52, No. 7, 1-4, 2016.

    20. Antalunai, S., C. Thongsopa, and T. Thosdeekoraphat, "An increasing the power transmission efficiency of flat spiral coils by using ferrite materials for wireless power transfer applications," International Conference on Electrical Engineering/electronics, 1-4, Nakhon Ratchasima, Thailand, 2014.

    21. Mohammad, M., S. Choi, Z. Islam, S. Kwak, and J. Baek, "Core design and optimization for better misalignment tolerance and higher range of wireless charging of PHEV," IEEE Trans. on Transport. Electrific., Vol. 3, No. 2, 445-453, 2017.
    doi:10.1109/TTE.2017.2663662

    22. Ding, W. and X. Wang, "Magnetically coupled resonant using Mn-Zn ferrite for wireless power transfer," 15th International Conference on Electronic Packaging Technology, 1561-1564, Chengdu, China, 2014.

    23. Mohammad, M., S. Kwak, and S. Choi, "Core design for better misalignment tolerance and higher range of wireless charging for HEV," Applied Power Electronics Conference and Exposition (APEC), 1748-1755, Long Beach, CA, USA, 2016.

    24. Huang, R., B. Zhang, D. Qiu, and Y. Zhang, "Frequency splitting phenomena of magnetic resonant coupling wireless power transfer," IEEE Trans. Magn., Vol. 50, No. 11, 1-4, 2014.

    25. Theilmann, P. T. and P. M. Asbeck, "An analytical model for inductively coupled implantable biomedical devices with ferrite rods," IEEE Trans. Biomed. Circuits Syst., Vol. 3, No. 1, 43-52, 2009.
    doi:10.1109/TBCAS.2008.2004776

    26. Salas, R. A. and J. Pleite, "Simulation of waveforms of a ferrite Inductor with saturation and power losses," Materials, Vol. 7, No. 3, 1850-1865, 2014.
    doi:10.3390/ma7031850