Vol. 96
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-09-15
Penetration through Slots in Cylindrical Cavities Operating at Fundamental Cavity Modes in the Presence of Electromagnetic Absorbers
By
Progress In Electromagnetics Research M, Vol. 96, 119-127, 2020
Abstract
Placing microwave absorbing materials into a high-quality factor resonant cavity may in general reduce the large interior electromagnetic fields excited under external illumination. In this paper, we aim to combine two analytical models we previously developed: 1) an unmatched formulation for frequencies below the slot resonance to model shielding effectiveness versus frequency; and 2) a perturbation model approach to estimate the quality factor of cavities in the presence of absorbers. The resulting model realizes a toolkit with which design guidelines of the absorber's properties and location can be optimized over a frequency band. Analytic predictions of shielding effectiveness for three transverse magnetic modes for various locations of the absorber placed on the inside cavity wall show good agreement with both full-wave simulations and experiments, and validate the proposed model. This analysis opens new avenues for specialized ways to mitigate harmful fields within cavities.
Citation
Salvatore Campione Larry Kevin Warne Isak C. Reines Roy K. Gutierrez Jeffery T. Williams , "Penetration through Slots in Cylindrical Cavities Operating at Fundamental Cavity Modes in the Presence of Electromagnetic Absorbers," Progress In Electromagnetics Research M, Vol. 96, 119-127, 2020.
doi:10.2528/PIERM20060803
http://www.jpier.org/PIERM/pier.php?paper=20060803
References

1. Robinson, M. P., et al., "Analytical formulation for the shielding effectiveness of enclosures with apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, No. 3, 240-248, 1998.
doi:10.1109/15.709422

2. Nie, X.-C. and N. Yuan, "Accurate modeling of monopole antennas in shielded enclosures with apertures," Progress In Electromagnetics Research, Vol. 79, 251-262, 2008.
doi:10.2528/PIER07100403

3. Eng Swee, S., et al., "Coupling studies and shielding techniques for electromagnetic penetration through apertures on complex cavities and vehicular platforms," IEEE Transactions on Electromagnetic Compatibility, Vol. 45, No. 2, 245-257, 2003.
doi:10.1109/TEMC.2003.810814

4. Tait, G. B., et al., "On measuring shielding effectiveness of sparsely moded enclosures in a reverberation chamber," IEEE Transactions on Electromagnetic Compatibility, Vol. 55, No. 2, 231-240, 2013.
doi:10.1109/TEMC.2012.2220779

5. Warne, L. K., et al., "A bound on electromagnetic penetration through a slot aperture with backing cavity," Sandia National Laboratories Report, 2016, SAND2016-9029, Albuquerque, NM, USA, 2016.

6. Campione, S., et al., "Preliminary survey on the effectiveness of an electromagnetic dampener to improve system shielding effectiveness," Sandia National Laboratories Report, 2018, SAND2018-10548, Albuquerque, NM, 2018.

7. Campione, S., et al., "Perturbation theory to model shielding effectiveness of cavities loaded with electromagnetic dampeners," Electronics Letters, Vol. 55, No. 11, 644-646, 2019.
doi:10.1049/el.2019.0656

8. Campione, S., et al., "Penetration through slots in cylindrical cavities operating at fundamental cavity modes," IEEE Transactions on Electromagnetic Compatibility, doi: 10.1109/TEMC.2020.2977600, 2020.

9. Williams, D. F., "Damping of the resonant modes of a rectangular metal package [MMICs]," IEEE Transactions on Microwave Theory and Techniques, Vol. 37, No. 1, 253-256, 1989.
doi:10.1109/22.20046

10. Dixon, P., "Cavity-resonance dampening," IEEE Microwave Magazine, Vol. 6, No. 2, 74-84, 2005.
doi:10.1109/MMW.2005.1491270

11. Campione, S., et al., "Antenna loading impact on the coupling response of a slotted cylindrical cavity," Sandia National Laboratories Report, 2017, SAND2017-5378, Albuquerque, NM, 2017.

12. Harrington, R. F., Time-harmonic Electromagnetic Fields, Chapters 1, 5, 7, Wiley-IEEE Press, 2001.
doi:10.1109/9780470546710

13. ECCOSORB MCS, Emerson & Cuming Microwave Products, https://www.laird.com/rfmicrowave-absorbers-dielectrics/elastomers-films-foams/cavity-resonance-and-surface-wave-absorbers/eccosorb-mcs.
doi:10.1109/9780470546710