Vol. 97

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-09-29

Simplified Rectangular Planar Array with Circular Boundary for Side Lobe Suppression

By Jafar Ramadhan Mohammed
Progress In Electromagnetics Research M, Vol. 97, 57-68, 2020
doi:10.2528/PIERM20062906

Abstract

The thinning methods were usually used to simplify the array complexity by turning off some of the radiating elements in large planar arrays which lead to unavoidable reduction in the directivity. In this paper, an alternative method is used to simplify the array complexity by partitioning a large array into two contiguous subarrays. The first subarray is in circular planar shape in which its elements are uniformly excited, while the second subarray in which its elements surround the circular subarray, and they have significant impacts on the array radiation features and are chosen to be adaptive. The desired radiation characteristics are then obtained by optimizing only the adaptive elements which are far less than the total number of the original array elements. Since the majority of the elements in the proposed array are uniformly excited, its directivity and taper efficiency are found very close to that of the benchmark solutions. Simulation results verify the effectiveness of the proposed array.

Citation


Jafar Ramadhan Mohammed, "Simplified Rectangular Planar Array with Circular Boundary for Side Lobe Suppression," Progress In Electromagnetics Research M, Vol. 97, 57-68, 2020.
doi:10.2528/PIERM20062906
http://www.jpier.org/PIERM/pier.php?paper=20062906

References


    1. Kahrilas, P. J., "HAPDAR — An operational phased array radar," Proc. IEEE, Vol. 56, No. 11, 1967-1975, 1968.
    doi:10.1109/PROC.1968.6773

    2. Brookner, E., Aspects of Modern Radar, 1st Ed., Artech House, Norwood, MA, 1988.

    3. Raytheon datasheet, Sea-Based X-Band Radar (SBX) for Missile Defence, Raytheon Datasheet [Online], available: www.raytheon.com/capabilities/rtnwcm/groups/rms/documents/content/rtn rms ps sbx datasheet.pdf, accessed 3 June 2020.

    4. Eiscat3d science report [Online], available: http://www.eiscat3d.se/sites/default/files/ EISCAT3D ScienceCase v2.pdf, accessed 3 June 2020.

    5. Mailloux, R. J. and E. Cohen, "Statistically thinned arrays with quantized element weights," IEEE Trans. Antennas Propag., Vol. 39, No. 4, 436-447, Apr. 1991.
    doi:10.1109/8.81455

    6. Keizer, W. P. M. N., "Large planar array thinning using iterative FFT techniques," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 3359-3362, Oct. 2009.
    doi:10.1109/TAP.2009.2029382

    7. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans. Antennas Propag., Vol. 42, No. 7, 993-999, Jul. 1994.
    doi:10.1109/8.299602

    8. Sallam, T. and A. M. Attiya, "Low sidelobe cosecant-squared pattern synthesis for large planar array using genetic algorithm," Progress In Electromagnetics Research M, Vol. 93, 23-34, 2020.
    doi:10.2528/PIERM20042005

    9. Kodgirwar, V. P., S. Deosarkar, and K. Joshi, "Design of adaptive array with E-shape slot radiator for smart antenna system," Progress In Electromagnetics Research M, Vol. 90, 137-146, 2020.
    doi:10.2528/PIERM19122901

    10. Mohammed, J. R., "Thinning a subset of selected elements for null steering using binary genetic algorithm," Progress In Electromagnetics Research M, Vol. 67, 147-157, 2018.
    doi:10.2528/PIERM18021604

    11. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. Antennas Propag., Vol. 52, No. 2, 397-407, Feb. 2004.
    doi:10.1109/TAP.2004.823969

    12. Recioui, A., "Sidelobe level reduction in linear array pattern synthesis using particle swarm optimization," Journal of Optimization Theory and Applications, Vol. 153, No. 2, 497-512, 2012.
    doi:10.1007/s10957-011-9953-9

    13. Ojaroudi Parchin, N., H. J. Basherlou, Y. I. A. Al-Yasir, and R. A. Abd-Alhameed, "A design of antenna array with improved performance for future smart phones," Progress In Electromagnetics Research C, Vol. 101, 1-12, 2020.

    14. Recioui, A., "Concentric ring arrays optimization using the spiral inspired technique," Algerian Journal of Signals and Systems, Vol. 3, No. 1, 10-21, Mar. 2018.

    15. Qi, Z., Y. Bai, Q. Wang, X. Zhang, and H. Chen, "Optimal synthesis of reconfigurable sparse arrays via multi-convex programming," IET Radar, Sonar & Navigation, 2020.

    16. Lopez, P., J. A. Rodriguez, F. Ares, and E. Moreno, "Low-sidelobe patterns from linear and planar arrays with uniform excitations except for phases of a small number of elements," Electronics Letters, Vol. 37, No. 25, 1495-1497, Dec. 2001.
    doi:10.1049/el:20011021

    17. Mohammed, J. R., "Design of printed Yagi antenna with additional driven element for WLAN applications," Progress In Electromagnetics Research C, Vol. 37, 67-81, 2013.
    doi:10.2528/PIERC12121201

    18. Compton, R. T., Adaptive Antennas, Prentice Hall, New Jersey, 1988.

    19. Li, Y., L. M. Vicente, K. C. Ho, and Y. H. Leung, "A study of the partially adaptive concentric ring array," Circuits Systems and Signal Processing, Vol. 27, No. 5, 733-748, Oct. 2008.
    doi:10.1007/s00034-008-9053-8

    20. Sayidmarie, K. H. and J. R. Mohammed, "Performance of a wide angle and wideband nulling method for phased arrays," Progress In Electromagnetics Research M, Vol. 33, 239-249, Oct. 2013.

    21. Mohammed, J. R., "Optimal null steering method in uniformly excited equally spaced linear array by optimizing two edge elements," Electronics Letters, Vol. 53, No. 11, May 2017.

    22. Mohammed, J. R. and K. H. Sayidmarie, "Sidelobe cancellation for uniformly excited planar array antennas by controlling the side elements," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 987-990, 2014.
    doi:10.1109/LAWP.2014.2325025

    23. Mohammed, J. R. and K. H. Sayidmarie, "Performance evaluation of the adaptive sidelobe canceller with various auxiliary configurations," AEU International Journal of Electronics and Communications, Vol. 80, 179-185, 2017.
    doi:10.1016/j.aeue.2017.06.039

    24. Mohammed, J. R., "Element selection for optimized multi-wide nulls in almost uniformly excited arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 4, 629-632, Apr. 2018.
    doi:10.1109/LAWP.2018.2807371

    25. Castorina, G., L. Di Donato, A. F. Morabito, T. Isernia, and G. Sorbello, "Analysis and design of a concrete embedded antenna for wireless monitoring applications," IEEE Antennas and Propagation Magazine, Vol. 58, No. 6, 76-93, 2016.
    doi:10.1109/MAP.2016.2609818