Vol. 108

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-01-30

Accurate and Efficient Evaluation of the Scattering of Bodies of Revolution Based on Magnetic Field Integral Equation

By Fahimeh Sepehripour and Martijn Constant van Beurden
Progress In Electromagnetics Research M, Vol. 108, 1-15, 2022
doi:10.2528/PIERM21112801

Abstract

The integrals arising in magnetic field integral equation (MFIE) can become highly singular, rendering their numerical computation extremely challenging. Here, we propose a technique by which the singular integrals of the MFIE can be accurately and efficiently evaluated. In this technique, the corresponding integrals are separated into singular and regular parts. The regular parts are computed using a very simple Fast Fourier transform, whereas the remaining singular parts are evaluated based on two three-terms recurrence relations. The accuracy of the proposed method is demonstrated by analyzing the scattering of various bodies with smooth or non-smooth geometries and comparing the results with the literature.

Citation


Fahimeh Sepehripour and Martijn Constant van Beurden, "Accurate and Efficient Evaluation of the Scattering of Bodies of Revolution Based on Magnetic Field Integral Equation," Progress In Electromagnetics Research M, Vol. 108, 1-15, 2022.
doi:10.2528/PIERM21112801
http://www.jpier.org/PIERM/pier.php?paper=21112801

References


    1. Ubeda, E., J. M. Rius, and A. Heldring, "Nonconforming discretization of the electric-field integral equation for closed perfectly conducting objects," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 8, 4171-4186, 2014.
    doi:10.1109/TAP.2014.2325954

    2. Freno, B. A., W. A. Johnson, B. F. Zinser, D. R. Wilton, F. Vipiana, and S. Campione, "Characterization and integration of the singular test integrals in the method-of-moments implementation of the electric-field integral equation," Engineering Analysis with Boundary Elements, Vol. 124, No. 8, 185-193, 2021.
    doi:10.1016/j.enganabound.2020.12.015

    3. Abdelmageed, A., "Efficient evaluation of modal Green's functions arising in EM scattering by bodies of revolution," Progress In Electromagnetics Research, Vol. 27, 337-356, 2000.
    doi:10.2528/PIER99061601

    4. Mohsen, A. A. K. and A. K. Abdelmageed, "A fast algorithm for treating EM scattering by bodies of revolution," AEU - International Journal of Electronics and Communications, Vol. 55, No. 3, 164-170, 2001.
    doi:10.1078/1434-8411-00025

    5. Yu, W. M., D. G. Fang, and T. J. Cui, "Closed form modal Green's functions for accelerated computation of bodies of revolution," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 11, 3452-3461, 2008.
    doi:10.1109/TAP.2008.2005459

    6. Hamed, S. M. A. and S. O. Bashir, "New exact series for modal Green's function," 2015 International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering (ICCNEEE), 83-86, 2015.
    doi:10.1109/ICCNEEE.2015.7381434

    7. Zubair, M., M. A. Francavilla, D. Zheng, F. Vipiana, and G. Vecchi, "Dual-surface electric field integral equation solution of large complex problems," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 6, 2577-2582, 2016.
    doi:10.1109/TAP.2016.2552549

    8. Bolli, P., G. G. Gentili, R. Nesti, and G. Pelosi, "Coupled BORs scattering via an efficient MoM solution of CFIE," Microwave and Optical Technology Letters, Vol. 37, No. 3, 180-183, 2003.
    doi:10.1002/mop.10861

    9. Yla-Oijala, P., "Numerical analysis of combined field integral equation formulations for electromagnetic scattering by dielectric and composite objects," Progress In Electromagnetics Research, Vol. 3, 19-43, 2008.
    doi:10.2528/PIERC08032501

    10. Hodges, R. E. and Y. Rahmat-Samii, "The evaluation of MFIE integrals with the use of vector triangle basis functions," Microwave and Optical Technology Letters, Vol. 14, No. 1, 9-14, 1997.
    doi:10.1002/(SICI)1098-2760(199701)14:1<9::AID-MOP4>3.0.CO;2-P

    11. Tong, M. S. and X. J. Huang, "Accurate solution of electromagnetic scattering by super-thin conducting objects based on magnetic field integral equation," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 10, 5633-5638, 2017.
    doi:10.1109/TAP.2017.2734161

    12. Gurel, L. and O. Ergul, "Singularity of the magnetic-field integral equation and its extraction," IEEE Antennas and Wireless Propagation Letters, Vol. 4, No. 1, 229-232, 2005.
    doi:10.1109/LAWP.2005.851103

    13. Ergul, O. and L. Gurel, "Improving the accuracy of the magnetic field integral equation with the linear-linear basis functions," Radio Science, Vol. 41, No. 4, 1-15, 2006.
    doi:10.1029/2005RS003307

    14. Mohsen, A. A. K. and A. K. Abdelmageed, "Magnetic field integral equation for electromagnetic scattering by conducting bodies of revolution in layered media," Progress In Electromagnetics Research, Vol. 24, No. 3, 19-37, 1999.
    doi:10.2528/PIER98122202

    15. Andreasen, M., "Scattering from bodies of revolution," IEEE Transactions on Antennas and Propagation, Vol. 13, No. 2, 303-310, 1965.
    doi:10.1109/TAP.1965.1138406

    16. Mautz, J. R. and R. F. Harrington, "Radiation and scattering from bodies of revolution," Applied Scientific Research, Vol. 20, No. 1, 405-435, 1969.
    doi:10.1007/BF00382412

    17. Glisson, A. W. and D. R. Wilton, "Simple and efficient numerical techniques for treating bodies of revolution,", Mississippi Univ University, 1979.

    18. Wood, W. D., A. W. Wood, and J. L. Fleming, "EM scattering from bodies of revolution using the locally corrected Nyström method," IEEE Antennas and Propagation Society Symposium, Vol. 4, 4036-4039, 2004.
    doi:10.1109/APS.2004.1330236

    19. Vidal, C. F. V. P. and U. C. Resende, "Solution of integral equation in scattering analysis of conducting bodies of revolution by mom with first type elliptic integrals," Proceedings of the IV International Conference on Computational Methods for Coupled Problems, 1232-1238, 2011.

    20. Lai, J. and M. O'Neil, "A fast and high order algorithm for the electromagnetic scattering of axis-symmetric objects," 2018 IEEE International Conference on Computational Electromagnetics (ICCEM), 1-2, 2018.

    21. Gedney, S. and R. Mittra, "The use of the FFT for the efficient solution of the problem of electromagnetic scattering by a body of revolution," IEEE Transactions on Antennas and Propagation, 92-95, 1988.

    22. Gedney, S. D. and R. Mittra, "The use of the FFT for the efficient solution of the problem of electromagnetic scattering by a body of revolution," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 3, 313-322, 1990.
    doi:10.1109/8.52253

    23. Tong, M. S. and W. C. Chew, "Evaluation of singular Fourier coefficients in solving electromagnetic scattering by body of revolution," Radio Science, Vol. 43, No. 4, 1-9, 2008.
    doi:10.1029/2007RS003755

    24. Su, T., D. Ding, Z. Fan, and R. Chen, "Efficient analysis of EM scattering from bodies of revolution via the ACA," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 2, 983-985, 2013.
    doi:10.1109/TAP.2013.2292079

    25. Gibson, W. C., The Method of Moments in Electromagnetics, CRC Press, 2014.
    doi:10.1201/b17119

    26. Schmitz, J. L., "Efficient solution for electromagnetic scattering using the dual-surface magnetic-field integral equation for bodies of revolution," Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting, 2318-2321, 1994.
    doi:10.1109/APS.1994.408019

    27. Fleming, J. L., A. W. Wood, and J. W. D. Wood, "Locally corrected Nyström method for EM scattering by bodies of revolution," Journal of Computational Physics, Vol. 196, No. 1, 41-52, 2004.
    doi:10.1016/j.jcp.2003.10.029

    28. Ubeda Farré, E., Contribution to the Improvement of Integral Equation Methods for Penetrable Scatterers, Universitat Politècnica de Catalunya, 2001.

    29. Resende, U. C., F. J. S. Moreira, and O. M. C. Pereira-Filho, "Efficient evaluation of singular integral equations in moment method analysis of bodies of revolution," Journal of Microwaves, Optoelectronics and Electromagnetic Applications (JMOe), Vol. 6, No. 2, 373-391, 2007.

    30. Vaessen, J. A. H. M., M. C. van Beurden, and A. G. Tijhuis, "Accurate and efficient computation of the modal Green's function arising in the electric-field integral equation for a body of revolution," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3294-3304, 2012.
    doi:10.1109/TAP.2012.2196911

    31. Trefethen, L. N. and J. Weideman, "The exponentially convergent trapezoidal rule," SIAM Review, Vol. 56, No. 3, 385-458, 2014.
    doi:10.1137/130932132

    32. Biggs, F., L. B. Mendelsohn, and J. B. Mann, "Hartree-Fock Compton profiles for the elements," Atomic Data and Nuclear Data Tables, Vol. 16, No. 3, 201-309, 1975.
    doi:10.1016/0092-640X(75)90030-3

    33. Wolfram Research, , NIntegrate, Wolfram Language function, https://reference.wolfram.com/language/ref/NIntegrate.html, 1988 (updated 2014).

    34. Umashankar, K. R., "Numerical analysis of electromagnetic wave scattering and interaction based on frequency-domain integral equation and method of moments techniques," Wave Motion, Vol. 10, No. 6, 493-525, 1988.
    doi:10.1016/0165-2125(88)90010-8

    35. Harrington, R. F., "The method of moments in electromagnetics," Journal of Electromagnetic Waves and Applications, Vol. 1, No. 3, 181-200, 1987.
    doi:10.1163/156939387X00018

    36. Vaessen, J. A. H. M., Efficient Modeling of Electromagnetic Fields in Stochastic Configurations, Technische Universiteit Eindhoven, 2015.