Vol. 109
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-03-24
Decoupling Control of Six-Pole Hybrid Magnetic Bearings
By
Progress In Electromagnetics Research M, Vol. 109, 51-61, 2022
Abstract
Six-pole hybrid magnetic bearing is a multiple input-output system with strong coupling between the degrees of freedom, a state feedback linearization dynamically decoupling the fuzzy immune PID controller for the subsystem after linear resolution coupling is proposed in this paper. Firstly, the basic theory of linear resolving coupling is expounded. Secondly, the proposed decoupling theory and control strategy are simulated in Matlab. Finally, the experimental platform is built, and the suspension experiments and coupling experiments are performed. It can be seen that the fuzzy immune PID controller has good performance, and the state feedback linearization method can realize the decoupling between the radial degrees of freedom of six-pole magnetic bearings.
Citation
Gai Liu, Junqi Huan, Huangqiu Zhu, Chenyin Zhao, and Zhihao Ma, "Decoupling Control of Six-Pole Hybrid Magnetic Bearings," Progress In Electromagnetics Research M, Vol. 109, 51-61, 2022.
doi:10.2528/PIERM22012402
References

1. Gu, H., H.-Q. Zhu, and Y.-Z. Hua, "Soft sensing modeling of magnetic suspension rotor displacements based on continuous hidden markov model," IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3, 1-5, 2018.
doi:10.1109/TASC.2017.2784397

2. Wu, C. and H.-K. Zhang, "Finite element analysis of eight-pole homopolar hybrid magnetic bearing," 2021 IEEE International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT), 156-160, 2021.
doi:10.1109/ICEEMT52412.2021.9602176

3. Usman, I., M. Paone, K. Smeds, et al. "Radially biased axial magnetic bearings/motors for precision rotary-axial spindles," IEEE/ASME Transactions on Mechatronics, Vol. 16, No. 3, 411-420, 2011.
doi:10.1109/TMECH.2011.2119323

4. Abooee, A. and M. Arefi, "Robust finite-time stabilizers for five-degree-of-freedom active magnetic bearing system," Journal of the Franklin Institute-Engineering and Applied Mathematics, Vol. 356, 80-102, 2019.
doi:10.1016/j.jfranklin.2018.08.026

5. Peng, C., J. Sun, X. Song, and J. Fang, "Frequency-varying current harmonics for active magnetic bearing via multiple resonant controllers," IEEE Transactions on Industrial Electronics, Vol. 64, No. 1, 517-526, 2017.
doi:10.1109/TIE.2016.2598723

6. Liu, G. and H.-Q. Zhu, "Displacement estimation of six-pole hybrid magnetic bearing using modified particle swarm optimization support vector machine," Energies, Vol. 15, No. 5, 2022.

7. Yu, J. and C. Zhu, "A multifrequency disturbances identification and suppression method for the self-sensing AMB rotor system," IEEE Transactions on Industrial Electronics, Vol. 65, No. 8, 6382-6392, 2018.
doi:10.1109/TIE.2017.2784340

8. Zhang, W.-Y., H.-Q. Zhu, Z.-B. Yang, et al. "Nonlinear model analysis and `switching model' of AC-DC three degree of freedom hybrid magnetic bearing," IEEE/ASME Transactions on Mechatronics, Vol. 21, No. 2, 1102-1115, 2016.
doi:10.1109/TMECH.2015.2463676

9. Zhang, W.-Y., H.-K. Yang, L. Cheng, et al. "Modeling based on exact segmentation of magnetic field for a centripetal force type-magnetic bearing," IEEE Transactions on Industrial Electronics, Vol. 67, No. 9, 7691-7701, 2020.

10. Ren, L.-M. and K.-K. Wang, "A moment and axial force sensor using a self-decoupled, passive and wireless method," IEEE Sensors Journal, Vol. 21, No. 19, 21432-21440, 2021.
doi:10.1109/JSEN.2021.3103748

11. Zhao, J.-H. and F. Han, "Decoupling control of multi-DOF supporting system of MLDSB," Applied Sciences-Basel, Vol. 11, No. 16, 2021.

12. Sun, X., H. Zhu, and L. Dang, "Linearization decoupling control of bearingless induction motor based on rotor field oriented control," 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 11-15, 2019.
doi:10.1109/ITNEC.2019.8729314

13. Zhang, T. and J. Zhen, "Suspension performance analysis on the novel hybrid stator type bearingless switched reluctance motor," IEEE Transactions on Magnetics, Vol. 57, No. 6, 2021.

14. Varatharajan, A., G. Pellegrino, and E. Armando, "Direct flux vector control of synchronous motor drives: Accurate decoupled control with online adaptive maximum torque per ampere and maximum torque per volts evaluation," IEEE Transactions on Industrial Electronics, Vol. 69, No. 2, 1235-1243, 2022.
doi:10.1109/TIE.2021.3060665

15. Li, S.-P., L.-W. Song, J.-Y. Wang, S.-Z. Li, and X.-F. Lei, "Decoupling active and passive hybrid radial magnetic bearing," 2015 International Conference on Control, Automation and Information Sciences (ICCAIS), 1-6, 2015.

16. Xu, S.-L. and J.-J. Sun, "Decoupling structure for heteropolar permanent magnet biased radial magnetic bearing with subsidiary air-gap," IEEE Transactions on Magnetics, Vol. 50, No. 8, 1-8, 2014.
doi:10.1109/TMAG.2014.2312396

17. Yang, Y.-F., Y. Ruan, W. Zhang, Q. Wang, Z.-B. Yang, and H.-Q. Zhu, "Decoupling control of 5 degrees of freedom AC hybrid magnetic bearings based on inverse system method," Proceedings of the 30th Chinese Control Conference, 278-282, 2011.

18. Kandil, A. and Y.-S. Hamed, "Tuned positive position feedback control of an active magnetic bearings system with 16-poles and constant stiffness," IEEE Access, Vol. 9, 73857-73872, 2021.
doi:10.1109/ACCESS.2021.3080457