Vol. 2
Latest Volume
All Volumes
PIERL 123 [2024] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-01-09
Holographic Femtosecond Laser Processing and Three-Dimensional Recording in Biological Tissues
By
, Vol. 2, 115-123, 2008
Abstract
Data recording on biological tissues and prostheses with femtosecond laser processing for personal identification is demonstrated. The target materials are human fingernails (fingernail memory) and dental prostheses (dental memory). Because they have unexpected movements and individual three-dimensional shapes, the processing system is required an adaptive focusing and highthroughput recording capability. The adaptive focusing is performed with a target surface detection. The high throughput is realized by parallel laser processing based on a computer-generated hologram displayed on a spatial light modulator. Two-dimensional and threedimensional parallel laser processing of glass is demonstrated.
Citation
Yoshio Hayasaki, "Holographic Femtosecond Laser Processing and Three-Dimensional Recording in Biological Tissues," , Vol. 2, 115-123, 2008.
doi:10.2528/PIERL07122808
References

1. Takita, A., M. Watanabe, H. Yamamoto, S. Matsuo, H. Misawa, Y. Hayasaki, and N. Nishida, "Optical bit recording in a human fingernail," Jpn. J. Appl. Phys., Vol. 43, No. 1, 168-171, 2004.
doi:10.1143/JJAP.43.168

2. Hayasaki, Y., H. Takagi, A. Takita, H. Yamamoto, N. Nishida, and H. Misawa, "Processing structures on human fingernail surface by a focused near-infrared femtosecond laser pulse," Jpn. J. Appl. Phys., Vol. 43, No. 12, 8089-8093, 2004.
doi:10.1143/JJAP.43.8089

3. Takita, A., H. Yamamoto, Y. Hayasaki, N. Nishida, and H. Misawa, "Three-dimensional optical memory using a human fingernail," Optics Express, Vol. 13, No. 12, 4560-4567, 2005.
doi:10.1364/OPEX.13.004560

4. Ichikawa, T., Y. Hayasaki, K. Fujita, K. Nagano, M. Murata, T. Kawano, and J. R. Chen, "Femtosecond pulse laser-oriented recording on dental prostheses," Dental Materials J., Vol. 25, No. 4, 733-736, 2006.

5. Takita, A., Y. Hayasaki, and N. Nishida, "Femtosecond laser processing system with target tracking feature," Journal of Laser Micro/Nanoengineering, Vol. 1, No. 3, 288-291, 2006.

6. Hayasaki, Y., T. Sugimoto, A. Takita, and N. Nishida, "Variable holographic femtosecond laser processing by use of spatial light modulator," Appl. Phys. Lett., Vol. 87, No. 3, 031101, 2005.
doi:10.1063/1.1992668

7. Hasegawa, S., Y. Hayasaki, and N. Nishida, "Holographic femtosecond laser processing with multiplexed phase Fresnel lenses," Opt. Lett., Vol. 31, No. 11, 1705-1707, 2006.
doi:10.1364/OL.31.001705

8. Hasegawa, S. and Y. Hayasaki, "Holographic femtosecond laser processing with multiplexed phase fresnel lenses displayed on the liquid crystal spatial light modulator," Opt. Rev., Vol. 14, No. 4, 208-213, 2007.
doi:10.1007/s10043-007-0208-9

9. Takahashi, H., S. Hasegawa, and Y. Hayasaki, "Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator," Appl. Opt., Vol. 46, No. 23, 5917-5923, 2007.
doi:10.1364/AO.46.005917

10. Chaen, K., H. Takahashi, S. Hasegawa, and Y. Hayasaki, "Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing," Opt. Commun., Vol. 280, No. 1, 165-172, 2007.
doi:10.1016/j.optcom.2007.08.006