Vol. 3
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-06-17
Analysis of 2D Photonic Crystal Cavities Using a Multi-Scattering Approach Based on Weighted Bessel Functions
By
Progress In Electromagnetics Research M, Vol. 3, 119-130, 2008
Abstract
A semi-analytic method, based on scattering approach is applied to analyze the finite size photonic crystal cavities surrounded by cylindrical dielectric rods.The resonant frequency and the quality factor (Q) are determined by this method.Also, with a source at the center of the cavity, field and energy distribution can be obtained at different frequencies.The algorithm is simple to simulate on PCs. There is no need for absorbing boundary conditions which are required in most numerical methods.Using the symmetry of the structure the computational cost is reduced to 1/8 and 1/12 those of the square and hexagonal lattices respectively.Since the computational time is very low (in the order of one minute) the variation in size and dielectric constant of the rods can be examined easily.It is shown as an example that by varying the radius of the rods according to their distance from the center of the cavity, the Q factor is increased considerably in comparison with that of uniform structures.
Citation
Habibollah Abiri, Rahim Ghayour, and Masoud Mahzoon, "Analysis of 2D Photonic Crystal Cavities Using a Multi-Scattering Approach Based on Weighted Bessel Functions," Progress In Electromagnetics Research M, Vol. 3, 119-130, 2008.
doi:10.2528/PIERM08051001
References

1. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, June 1987.
doi:10.1103/PhysRevLett.58.2486

2. Mekis, A., J.C.Chen, I.Kurland, S.F un, P.R.Villeneuve, and J.D.Joannop oulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett., Vol. 77, No. 18, 3787-3790, Oct.1996.
doi:10.1103/PhysRevLett.77.3787

3. ablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, May 1987.
doi:10.1103/PhysRevLett.58.2059

4. Joannopoulos, J.D., R.D.Meade, and J.N.Winn, Photonic Crystals: Molding the Flow of Light, Ch.7, Princeton University Press, Princeton, NJ, 1995.

5. Sakoda, K., Optical Properties of Photonic Crystals, Ch.6, Springer-Verlag, New York, 2001.

6. Sakoda, K., "Numerical study on localized defect modes in twodimensional triangular photonic crystals," J. Appl. Phys., Vol. 84, 1210-1214, Aug.1998.
doi:10.1063/1.368186

7. Hwang, J.K., S.B.Hyun, H.Y.Ryu, and Y.H.Lee, "Resonant modes of two-dimensional photonic bandgap cavities determined by the finite-element method and by use of the anisotropic perfectly matched layer boundary condition," J. Opt. Soc. Amer. B., Vol. 15, 2316-2324, Aug.1998.
doi:10.1364/JOSAB.15.002316

8. Dibben, D.C. and R.Metaxas, "Frequency domain vs.time domain finite element methods for calculation of fields in multimode cavities," IEEE Trans. Magn., Vol. 33, No. 2, 1468-1471, Mar.1997.
doi:10.1109/20.582537

9. Rodriguez-Esquerre, V.F., M.Koshiba, and H.E.Hernandez-Figueroa, "Finite-element analysis of photonic crystal cavities: Time and frequency domain," IEEE J. Lightw. Technol., Vol. 23, No. 3, 1514-1521, Mar.2005.
doi:10.1109/JLT.2005.843441

10. Tayeb, G. and D.Ma ystre, "Rigorous theoretical study of finitesize two-dimensional photonic crystals doped by microcavities," J. Opt. Soc. Am. A, Vol. 14, No. 12, 3323-3332, Dec.1997.
doi:10.1364/JOSAA.14.003323

11. Maystre, D., "Electromagnetic scattering by a set of objects: An integral method based on scattering properties," Progress In Electromagnetic Research, Vol. 57, 55-84, 2006.
doi:10.2528/PIER05040901

12. Maystre, D., M. Saillard, and G. Tayeb, "Special methods of wave diffraction," E-M Waves Scattering, Approximate and Numerical Methods, Chap. 1.5.6, 2001.

13. Painter, O., K.Sriniv asan, and P.E.Barklay, "Wannier-like equation for the resonant cavity modes of locally perturbed photonic crystals," Phys. Rev. B., Vol. 68, 35214, July 2003.

14. Harrington, R. F., Time-Harmonic Electromagnetic Fields, Chap.5, McGraw-Hill, 1961.

15. Song, B.S., S.No da, and T.Asano, "Ultra-high-Q photonic double hetero-structure nanocavity," Nat. Mater., Vol. 4, No. 3, 207-210, 2005.
doi:10.1038/nmat1320

16. Asano, T., B.S.Song, and S.Noda, "Analysis of the experimental Q factors (∼ 1 million) of photonic crystal nanocavities," Opt. Express, Vol. 14, No. 5, 1996-2002, Mar.2006.
doi:10.1364/OE.14.001996