1. Tiefenthaler, K. and W. Lukosz, "Integrated optical switches and glass sensor," Opt. Letter, Vol. 10, 137-139, 1984.
doi:10.1364/OL.9.000137 Google Scholar
2. Tiefenthaler, K. and W. Lukosz, "Sensitivity of grating couplers as integrated optical chemical sensors," Rev. Mod. Phys., Vol. 49, 361-420, 1977.
doi:10.1103/RevModPhys.49.361 Google Scholar
3. Kunz, R. E., "Miniature integrated optical modules for chemical and biological sensing," Sens. Actuators B, Vol. 38, 13-28, 1997.
doi:10.1016/S0925-4005(97)80167-0 Google Scholar
4. Lukosz, W., "Integrated optical chemical and direct biochemical sensors," Sens. Actuators B, Vol. 29, 3750, 1995.
doi:10.1016/0925-4005(95)01661-9 Google Scholar
5. Horvath, R., G. Fricsovszky, and E. Pap, "Application of the optical waveguide lightmode spectroscopy to monitor lipid bilayer phase transition," Biosensors Bioelectron., Vol. 18, 415-428, 2003.
doi:10.1016/S0956-5663(02)00154-9 Google Scholar
6. Hervath, R., et al. "Optical waveguide sensor for on-line monitoring of bacteria," Opt. Letter, Vol. 28, 1233-1235, 2003.
doi:10.1364/OL.28.001233 Google Scholar
7. Marazuela, M. D., et al. "Fiber-optic biosensors --- An overview," Anal. Bioanal Chem., Vol. 372, 664-682, 2002.
doi:10.1007/s00216-002-1235-9 Google Scholar
8. Ivnitski, D., et al. "Review: Biosensors for detection of pathogenic bacteria," Biosens. Bioelectron, Vol. 14, 599-624, 1999.
doi:10.1016/S0956-5663(99)00039-1 Google Scholar
9. Udd, E., "An overview of fiber optic sensors," Rev. Sci. Instrum., Vol. 66, 4015-4030, 1995.
doi:10.1063/1.1145411 Google Scholar
10. Kuswandi, B., "Simple optical fiber biosensor based on immobilized enzyme for monitoring of trace having metal ions," Anal. Bioanal. Chem., Vol. 376, 1104-1110, 2003.
doi:10.1007/s00216-003-2001-3 Google Scholar
11. Horvath, R., et al. "Measurement of guided light mode intensity: An alternative waveguide sensing principle," Appl. Phys. Lett., Vol. 84, 4044-4046, 2004.
doi:10.1063/1.1751610 Google Scholar
12. Homola, J., S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: Review," Sensors and Actuators B, Vol. 54, 3-15, 1999.
doi:10.1016/S0925-4005(98)00321-9 Google Scholar
13. Sharma, A. K. and B. D. Gupta, "Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection," Optical Fiber Technol., Vol. 12, 87-100, 2006.
doi:10.1016/j.yofte.2005.07.001 Google Scholar
14. Horvath, R., H. C. Pederson, and N. Skivensen, "Monitoring of living cell attachment and spreading using reverse symmetry wave-guide sensing," Appl. Phys. Letters, Vol. 86, 071101-071103, 2005.
doi:10.1063/1.1862756 Google Scholar
15. Skivensen, N., R. Horvath, and H. C. Pederson, "Optimization of metal-clad waveguide sensor," Sensor and Actuators B, Vol. 106, 668-676, 2005.
doi:10.1016/j.snb.2004.09.014 Google Scholar
16. Skivensen, N., R. Horvath, S. Thinggaaed, N. B. Larsen, and H. C. Pedersen, "Deep-probe metal-clad waveguide biosensors," Biosensor and Bioelectronics, Vol. 22, 1282-1288, 2007.
doi:10.1016/j.bios.2006.05.025 Google Scholar
17. Ksendzov, A. and Y. Lin, "Integrated Optics ring-resonator sensor for protein detection," Opt. Lett., Vol. 30, 3344-3346, 2005.
doi:10.1364/OL.30.003344 Google Scholar
18. Yalcin, A., K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, et al. "Optical sensing of biomolecules using micro -ring resonators," IEEE J. Sel. Topics Quantum Electron, Vol. 12, 148-154, 2006.
doi:10.1109/JSTQE.2005.863003 Google Scholar
19. Blanco, F. J., M. Agirregabiria, J. Berganzo, K. Mayora, J. Elizalde, et al. "Microfluidic optical Integrated CMOS compatible devices for level free biochemical sensing," J. Micromech. Microeng., Vol. 16, 1006-1016, 2006.
doi:10.1088/0960-1317/16/5/018 Google Scholar
20. Densmore, A., D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, et al. "A silicon-on-insulator photonic wire based evanescent field sensor," IEEE Photonics Technology Letters, Vol. 18, No. 23, 2520-2522, 2006.
doi:10.1109/LPT.2006.887374 Google Scholar
21. Veldhuis, G. J., O. Parriaux, H. J. W. Hockstra, and P. V. Lambeck, "Sensitivity enhancement in evanescent optical waveguide sensors ," J. of Lightw. Technol., Vol. 18, 677-682, 2000.
doi:10.1109/50.842082 Google Scholar
22. Jourab, M., et al. "The development of a metal clad waveguide sensor for the detection of particles," Sensors and Actuators B, Vol. 90, 296-307, 2003. Google Scholar
23. Jourab, M., et al. "An integrated metal clad leaky waveguide sensor for detection of bacteria," Anal. Chemistry, Vol. 77, 232-242, 2005. Google Scholar
24. Taya, S. A., M. M. Shabat, and H. M. Khalil, "Enhancement of sensitivity in optical waveguide sensors using left-handed materials,", doi:10.1016/j.ijleo.2007.12.001, 2007.
doi:10.1016/j.ijleo.2007.12.001 Google Scholar
25. Huang, S. Y. and S. Y. Wang, "Light propagation characteristics in various dielectric waveguide," Chinese Journal of Physics, Vol. 24, No. 2, 129-137, 1986. Google Scholar
26. Fletchert, M. and G. I. Loeb, "Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces ," Applied and Environmental Microbiology, Vol. 37, No. 1, 67-72, 1979. Google Scholar
27. Morell, A. and Y. H. Ahn, "Optical efficiency factors of free-living marine bacteria: Influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters," Journal of Marine Research, Vol. 48, 145-175, 1990.
doi:10.1357/002224090784984632 Google Scholar
28. Lavers, C. R., K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, "Planar optical waveguides for sensing applications," Sensors and Actuators B, Vol. 69, 85-95, 2000.
doi:10.1016/S0925-4005(00)00412-3 Google Scholar
29. Campbell, A. N., E. M. Kartzmark, and W. E. Falconer, "The system: Nicotine-methylethyl ketone-water," Can. J. Chem., Vol. 36, 1475-1486, 1958.
doi:10.1139/v58-218 Google Scholar
30. Debenham, M. and G. D. Dew, "The refractive index of toluene in the visible spectral region," J. Phys. E: Sci. Instrum., Vol. 14, 544-545, 1981.
doi:10.1088/0022-3735/14/5/004 Google Scholar
31. Rostami, A. and H. Motavali, "Asymptotic iteration method: A powerful approach for analysis of inhomogeneous dielectric slab waveguides," Progress In Electromagnetics Research B, Vol. 4, 171-182, 2008.
doi:10.2528/PIERB08011701 Google Scholar
32. Wang, Z. J. and J. F. Dong, "Analysis of guided modes in asymmetric left-handed slab waveguides," Progress In Electromagnetics Research, Vol. 62, 203-215, 2006.
doi:10.2528/PIER06021802 Google Scholar
33. Liu, S.-H., C.-H. Liang, W. Ding, L. Chen, and W.-T. Pan, "Electromagnetic wave propagation through a slab waveguide of uniaxially anisotropic dispersive metamaterial," Progress In Electromagnetics Research, Vol. 76, 467-475, 2007.
doi:10.2528/PIER07071905 Google Scholar