Vol. 6
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-03-27
Mathematical Model for the Prediction of Microwave Signal Attenuation Due to Duststorm
By
Progress In Electromagnetics Research M, Vol. 6, 139-153, 2009
Abstract
The microwave signal attenuation caused by dust is one of the major problems in utilizing microwave bands for terrestrial and space communication especially at desert and semi desert area. This paper presents a mathematical model developed to characterize the microwave signal attenuation due to dust. This model enables a convenient calculation of the microwave signal path attenuation which relates attenuation to visibility, frequency, particle size and complex permittivity. The predicted values from the mathematical model, which are compared with the measured values observed by the author in Sudan show relatively optimistic agreement.
Citation
Zain Elabdin Omer Elshaikh Md. Rafiqul Islam Othman O. Khalifa Hany Abd-El-Raouf , "Mathematical Model for the Prediction of Microwave Signal Attenuation Due to Duststorm," Progress In Electromagnetics Research M, Vol. 6, 139-153, 2009.
doi:10.2528/PIERM09021906
http://www.jpier.org/PIERM/pier.php?paper=09021906
References

1. N'tchayi Mbourou, G., J. J. Bertrand, and S. E. Nicholson, "The diurnal and seasonal cycles of wind-borne dust over Africa north of the equator," Journal of Applied Meteorology, Vol. 36, 868-882, 1997.
doi:10.1175/1520-0450(1997)036<0868:TDASCO>2.0.CO;2

2. Williams, K. and R. Greeley, "Radar attenuation by sand: Laboratory measurements of radar transmission," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 11, Nov. 2001.

3. Olsen, R. L., et al., "The aRb relation in the calculation of rain attenuation," IEEE Transactions on Antennas and Propagation, Vol. 26, No. 2, Mar. 1978.
doi:10.1109/TAP.1978.1141845

4. Li, L., P. Kooi, M. Leong, T. Yeo, and M. Gao, "Microwave attenuation by realistically distorted raindrops: Part I --- Theory," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 8, Aug. 1995.

5. Rogers, R. R., "Statistical rainstorm models: Their theoretical and physical foundations," IEEE Transactions on Antennas and Propagation, July 1976.

6. Crane, R. K., "Prediction of attenuation by rain," IEEE Trans. Commun., Vol. 29, 1717-1733, 1980.
doi:10.1109/TCOM.1980.1094844

7. Jain, Y. M. and P. A. Watson, "Attenuation in melting snow on microwave and millimeter wave terrestrial radio link," Electron. Lett., Vol. 21, No. 2, 68-69, 1985.
doi:10.1049/el:19850047

8. Srivastava, S. K. and B. R. Vishwakarma, "Cross-polarization and attenuation of microwave/millimeter wave propagation in storm layer containing sand, silt and clay as dust constituents," IE(I) Journal-ET, Vol. 84, Jul. 2003.

9. Ruike, Y., W. Zhensen, and Y. Jinguang, "The study of MMW and MWattenuation considering multiple scattering effect in sand and dust storms at slant paths," International Journal of Infrared and Millimeter Waves, Vol. 24, No. 8, Aug. 2003.
doi:10.1023/A:1025017809535

10. Yu, Z., Z. Peng, P. Liu, and X. Wu, "The influence of charged sand particles on the external insulation performance of composite insulators in sandstorm condition," IEEE 8th International Conference on Properties and Applications of Dielectric Materials, Jun. 2006.

11. Collin, R. E., Antenna & Radiowave Propagation, McGraw-hill, International Edition, Singapore, 1985.

12. Crane, R. K., "Propagation phenomena affecting satellite communication systems operating in the centimeter and millimeter wavelength bands," Proc. IEEE, Vol. 59, No. 2, 173-188, 1971.
doi:10.1109/PROC.1971.8123

13. Oguchi, T., "Electromagnetic wave propagation and scattering in hydrometeors," Proceedings of the IEEE, Vol. 71, No. 9, Sep. 1983.
doi:10.1109/PROC.1983.12724

14. Chu, T. S., "Effects of sandstorms on microwave propagation," Bell System Technical Journal, Vol. 58, No. 2, Feb. 1979.

15. Goldhirsh, J., "Attenuation and backscatter from a derived two-dimensional duststorm model," IEEE Trans. Antennas Propagation, Vol. 49, No. 12, 1703-1711, 2001.
doi:10.1109/8.982449

16. Ishimaru, A., Wave Propagation and Scattering in Random Media, IEEE, N.Y., 1997.

17. Vishvakarma, B. R. and C. S. Rai, "Limitations of rayleigh scattering in the prediction of millimeter wave attenuation in sand and dust storms," Geoscience and Remote Sensing Symposium, IEEE Inter., 1993.

18. Alhaider, M. A. and A. A. Ali, "Experimental studies on millimeterwave and infrared propagation in arid land: The effect of sand storms," Sixth International Conference on Antennas and Propagation ICAP, 1989.

19. Ahmed, et al., "Airborne dust size analysis for tropospheric propagation of millimetricwaves into duststorms," IEEE Transactions on Geoscience and Remote Sensing, Vol. GE-25, No. 5, Sep. 1987.
doi:10.1109/TGRS.1987.289838

20. Crane, R. K., "Propagation phenomena affecting satellite communication systems operating in the centimeter and millimeter wavelength bands," Proceedings of IEEE, Vol. 59, No. 2, 173-188, 1971.
doi:10.1109/PROC.1971.8123

21. Williams, K. and R. Greeley, "Radar attenuation by sand: Laboratory measurements of radar transmission," IEEE Transactions on Geoscience and Remote Sensing, Vol. 29, No. 11, Nov. 2001.

22. Ghobrial, S. I., "The effect of sand storms on microwave propagation," Proc. Nat. Telecommun. Conf., Vol. 2, No. CH1539-6/80/0000-0216, 43.5.1-43.5.4, Houston, TX, 1980.

23. Ghobrial, S. I. and S. M. Sharief, "Microwave attenuation and cross polarization in dust storms," IEEE Trans. Antennas Propagat., Vol. AP-35, 418-425, Apr. 1987.
doi:10.1109/TAP.1987.1144120

24. Ruike, Y., W. Zhensen, and Y. Jinguang, "The study of MMW and MWattenuation considering multiple scattering effect in sand and dust storms at slant paths," International Journal of Infrared and Millimeter Waves, Vol. 24, No. 8, Aug. 2003.
doi:10.1023/A:1025017809535