Vol. 11
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-02-03
Analysis of Annular Ring Microstrip Patch on Uniaxial Medium via Hankel Transform Domain Immittance Approach
By
Progress In Electromagnetics Research M, Vol. 11, 37-52, 2010
Abstract
In this study, annular-ring microstrip patch on uniaxial medium is analysed in Hankel Transform Domain. Equivalent models of the structure are obtained depending on the TE and TM mode decomposition in this domain. For the simplification of the tensor form formulations, equivalent matrix operators are defined in cylindrical coordinates instead of the differential ones. Then, resonant characteristics of the structure is determined via the application of the moment method and compared with the isotropic case for different anisotropy ratio values and structural parameters. Equivalent circuit models for the case of multilayered substrates and superstrates are given in order to be used in the following studies on annular-ring microstrip patch.
Citation
Çiğdem Seçkin Gürel, and Erdem Yazgan, "Analysis of Annular Ring Microstrip Patch on Uniaxial Medium via Hankel Transform Domain Immittance Approach," Progress In Electromagnetics Research M, Vol. 11, 37-52, 2010.
doi:10.2528/PIERM09071404
References

1. Itoh, T., "Spectral domain immitance approach for dispersion characteristics of generalised printed transmission lines," IEEE Trans. Microwave Theory and Tech., Vol. 28, No. 7, 733-736, 1980.
doi:10.1109/TMTT.1980.1130158

2. Araki, K. and T. Itoh, "Hankel transform domain analysis of open circular microstrip radiating structures," IEEE Trans. Antennas and Propagat., Vol. 29, No. 1, 84-89, Jan. 1981.
doi:10.1109/TAP.1981.1142521

3. Ali, S. M., W. C. Chew, and J. A. Kong, "Vector Hankel transform analysis of annular ring microstrip antenna," IEEE Trans. Antennas and Propagat., Vol. 30, No. 7, 637-644, Jul. 1982.

4. Lee, H. and V. K. Tripathi, "Spectral domain analysis of frequency dependent propagation characteristics of planar structures on uniaxial medium," IEEE Trans. Microwave Theory and Tech., Vol. 30, 1188-1193, Aug. 1982.

5. Krowne, C. M., "Green's function in the spectral domain for biaxial and uniaxial anisotropic planar dielectric structures," IEEE Trans. Antennas and Propagat., Vol. 32, 1273-1281, Dec. 1984.
doi:10.1109/TAP.1984.1143250

6. Nakatani, A. and N. G. Alexopoulos, "Toward a generalised algorithm for the modeling of the dispersive properties of integrated circuit structures on anisotropic substrates," IEEE Trans. Microwave Theory and Tech., Vol. 12, 1436-1441, Dec. 1985.
doi:10.1109/TMTT.1985.1133236

7. Araki, K., H. Ueda, and T. Masayuki, "Numerical analysis of circular disk microstrip antennas with parasitic elements," IEEE Trans. Antennas and Propagat., Vol. 34, 1390-1394, Dec. 1986.
doi:10.1109/TAP.1986.1143782

8. Pozar, D. M., "Radiation and scattering from a microstrip patch on a uniaxial substrate," IEEE Trans. Antennas and Propagat., Vol. 35, 613-621, June 1987.
doi:10.1109/TAP.1987.1144161

9. Nelson, R. M., D. A. Rogers, and A. G. D'Assuncao, "Resonant frequency of a rectangular microstrip patch on several uniaxial substrates," IEEE Trans. Antennas and Propagat., Vol. 38, 973-981, Jul. 1990.
doi:10.1109/8.55607

10. Fan, Z. and K. F. Lee, "Hankel transform domain analysis of dual-frequency stacked circular disk and annular ring microstrip antennas," IEEE Trans. Antennas and Propagat., Vol. 39, No. 6, 867-870, Jun. 1991.
doi:10.1109/8.86891

11. Gurel, C. S. and E. Yazgan, "Bandwidth widening in annular ring microstrip antennas with superstrate," Proc. IEEE/AP-S Int. Symp., 692-695, 1995.

12. Kuo, J. T., "Vector finite Hankel transform analysis of shielded single and coupled microstrip ring structures," IEEE Trans. Microwave Theory and Tech., Vol. 47, No. 11, 2161-2164, Nov. 1999.

13. Losada, V., R. R. Boix, and M. Horno, "Full wave analysis of circular microstrip resonators in multilayered media containing uniaxial anisotropic dielectrics, magnetized ferrites, and chiral materials," IEEE Trans. Microwave Theory and Tech., Vol. 48, 1057-1064, Jun. 2000.
doi:10.1109/22.904745

14. Barkat, W. and A. Benghalia, "Annular ring microstrip antenna in multilayered media containing uniaxial dielectrics," First Int. Symp. on Control, Commun. and Signal Processing, 327-330, 2004.
doi:10.1109/ISCCSP.2004.1296293

15. Gurel, C. S. and E. Yazgan, "Characteristics of a circular patch microstrip antenna on uniaxially anisotropic substrate," IEEE Trans. Antennas and Propagat., Vol. 52, No. 10, 2532-2537, Oct. 2004.
doi:10.1109/TAP.2004.834453

16. Feitoza, G. M., A. G. d'Assuncao, S. G. Silva, and J. R. S. Oliveira, "Analysis of circular microstrip patch antennas on anisotropic substrates using Hertz vector potentials," Proc. 2005 Asia-Pacific Micr. Conf. (APMC2005), China, 2005.

17. Vasconcelos, C. F. L., S. G. Silva, M. R. M. L. Albuquerque, J. R. S. Oliveira, and G. d'Assuncao, "Annular ring microstrip antennas for millimeter wave applications," Int. J. Infrared Millim. Waves, Vol. 28, 821-829, 2007.
doi:10.1007/s10762-007-9232-x

18. Barkat, Q. and A. Benghalia, "Radiation and resonant frequency of superconducting annular ring microstrip antenna on uniaxia anisotropic media," Int. J. Infrared Millim. Waves, Jun. 2009.

19. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley, 2006.

20. Rezaiesarlak, R. and F. Hodjatkashani, "Analysis of capacitively coupled microstrip-ring resonator based on spectral domain method," Progress In Electromagnetics Research Letter, Vol. 3, 25-33, 2008.
doi:10.2528/PIERL08012504

21. Khah, S. K., T. Chakarvarty, and P. Balamurali, "Analysis of an electromagnetically coupled microstrip ring antenna using extended feedline," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2--3, 369-376, 2009.
doi:10.1163/156939309787604436

22. Chen, Y. C. and B. Beker, "Analysis of single and coupled microstrip lines on anisotropic substrates using differential matrix operators and the spectral domain method," IEEE Trans. Microwave Theory and Tech., Vol. 41, 123-127, Jan. 1993.
doi:10.1109/22.210238