Vol. 14
Latest Volume
All Volumes
PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-05-03
A Novel Duality Between Permeability and Permittivity in a Concentric Sphere
By
Progress In Electromagnetics Research Letters, Vol. 14, 91-100, 2010
Abstract
Consider a TEM plane wave incident on a spherical multilayer structure, then the following theorem is valid. This theorem reveals a duality between permeability and permittivity of media in a spherical multilayer structure. Theorem: Consider a sphere with arbitrary radius and parameters s (ε22) surrounded by a homogenous medium with parameters (ε11). Then consider the case that each medium is filled by its dual medium according to the interchange εi↔μi. Then, the forward and backward radar cross sections of the structure are the same for the two dual cases. However, in half planes φ=((2k+1)π)/4;(k=0,1,2,3), the interchange εi↔μi has no similar effect on the value of the radar cross section.
Citation
Noushin Vaseghi, Ali Abdolali, and Homayoon Oraizi, "A Novel Duality Between Permeability and Permittivity in a Concentric Sphere," Progress In Electromagnetics Research Letters, Vol. 14, 91-100, 2010.
doi:10.2528/PIERL10022104
References

1. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering, Prentice Hall, 1991.

2. Oraizi, H. and A. Abdolali, "Ultra wide band RCS optimization of multilayerd cylinderical structures for arbitrarily polarized incident plane waves ," Progress In Electromagnetics Research, Vol. 78, 129-157, 2008.
doi:10.2528/PIER07090305

3. Alu, A. and N. Engheta, "Polarizabilities and effective parameters for collections of spherical nano-particles formed by pairs of concentric double-negative (DNG), single-negative (SNG) and/or double-positive (DPS) metamaterial layers ," J. Appl. Phys., Vol. 97, No. 094310, 1-12, 2005.

4. Oraizi, H. and A. Abdolali, "Mathematical formulation for zero refection from multilayer metamaterial structures and their notable applications," IET Microwaves, Antennas and Propagation Journal, Vol. 3, No. 6, 987-996, 2009.
doi:10.1049/iet-map.2008.0281

5. Oraizi, H. and A. Abdolali, "Combination of MLS, GA & CG for the reduction of RCS of multilayered cylindrical structures composed of dispersive metamaterials ," Progress In Electromagnetic Research B, Vol. 3, 227-253, 2008.
doi:10.2528/PIERB07120803

6. Manzanares-Martinez, J. and J. Gaspar-Armenta, "Direct integration of the constitutive relations for modeling dispersive metamaterials using the finite diference time-domain technique," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2297-2310, 2007.
doi:10.1163/156939307783134452

7. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section ," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603

8. Engheta, N. and R. Ziolkowski, "Metamaterials: Physics and Engineering Explorations," Wiley-IEEE Press, 2006.

9. Sihvola, A., "Metamaterials in electromagnetics," Metamaterials, Vol. 1, No. 1, 2-11, 2007.
doi:10.1016/j.metmat.2007.02.003

10. Chen, H., B. I. Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.
doi:10.1163/156939306779322585

11. Ziolkowski, R. W. and A. D. Kipple, "Causality and doublenegative metamaterials," Phys. Rev. E, Vol. 68, 026615, 2003.
doi:10.1103/PhysRevE.68.026615

12. Qiu, C. W., L. W. Li, T. S. Yeo, and S. Zouhdi, "Scattering by rotationally symmetric anisotropic spheres: Potential formulation and parametric studies," Phys. Rev. E, Vol. 75, 026609, 2007.
doi:10.1103/PhysRevE.75.026609

13. Lukyanchuk, B. S. and C. W. Qiu, "Enhanced scattering efficiencies in spherical particles with weakly dissipating anisotropic materials," Appl. Phys. A, Vol. 92, 773, 2008.
doi:10.1007/s00339-008-4572-5

14. Uslenghi, P. L. E., "Exact scattering by isorefractive bodies," IEEE Trans. on Antennas and Propagation, Vol. 45, No. 9, 1382-1385, 1997.
doi:10.1109/8.623127