Vol. 15
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-05-26
Localization Approach Based on Ray-Tracing Including the Effect of Human Shadowing
By
Progress In Electromagnetics Research Letters, Vol. 15, 1-11, 2010
Abstract
This work presents an accurate and realistic positioning approach for indoor environments based on fingerprinting and ray-tracing techniques. Fading caused by multipath seriously degrades the performance of communication systems operating inside buildings. For this reason, the proposed localization method considers multipath effects due to reflections and diffraction from walls, roof and floor. However, fading in indoor environments can also be caused by the movement of people or the presence of furniture. Because people are the primary absorption agents in indoor channels, their influence on the radio propagation channel must be considered. The proposed localization method takes into account the effects of human body shadowing to provide a realistic estimation of the mobile station position. Numerical calculations in real indoor scenarios show reasonable results.
Citation
Josefa Gómez Perez, Abdelhamid Tayebi, Francisco Manuel Adana Herrero, and Oscar Gutierrez Blanco, "Localization Approach Based on Ray-Tracing Including the Effect of Human Shadowing," Progress In Electromagnetics Research Letters, Vol. 15, 1-11, 2010.
doi:10.2528/PIERL10030908
References

1. Chueng, K. W., H. C. So, W.-K. Ma, and Y. T. Chan, "Least square algorithms for time-of-arrival based mobile location," IEEE Trans. Signal Processing, Vol. 52, 1121-1128, 2004.
doi:10.1109/TSP.2004.823465

2. Wang, X., Z. X. Wang, and B. O. Dea, "A TOA-based location algorithm reducing the errors due to Non-Line-of-Sight (NLOS) propagation ," IEEE Trans. Veh. Tech., Vol. 52, 112-116, 2003.
doi:10.1109/TVT.2002.807158

3. Chan, Y. T., W. Y. Tsui, H. C. So, and P. C. Ching, "Time-of-arrival based localization under NLOS conditions," IEEE Trans. Veh. Tech., Vol. 55, 17-24, 2006.
doi:10.1109/TVT.2005.861207

4. Bocquet, M., C. Loyez, and A. Benlarbi-Dela, "Using enhanced-TDOA measurement for indoor positioning," IEEE Microwave and Wireless Components Letter, Vol. 15, No. 10, October 2005.

5. Spencer, Q., M. Rice, B. Jeffs, and M. Jensen, "A statistical model for angle of arrival in indoor multipath propagation," IEEE Trans. Veh. Tech., Vol. 3, 1415-1419, 1997.

6. Landesa, L., I. T. Castro, J. M. Taboada, and F. Obelleiro, "Bias of the maximum likelihood DOA estimation from inaccurate knowledge of the antenna array response ," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 9, 1205-1217, 2007.

7. Harabi, F., H. Changuel, and A. Gharsallah, "Direction of arrival estimation method using a 2-L shape arrays antenna," Progress In Electromagnetics Research, Vol. 69, 145-160, 2007.
doi:10.2528/PIER06120204

8. Roos, T., P. Myllymaki, H. Tirri, P. Misikangas, and J. Sievanen, "A probabilistic approach to WLAN user location estimation," International Journal of Wireless Information Networks, Vol. 9, No. 3, 155-164, 2002.
doi:10.1023/A:1016003126882

9. Martinez, D., F. Las-Heras, and R. G. Ayestaran, "Fast methods for evaluating the electric field level in 2D-indoor environments," Progress In Electromagnetics Research, Vol. 69, 247-255, 2007.
doi:10.2528/PIER06122105

10. Nelson, J. K., M. R. Gupta, J. E. Almodovar, and W. H. Mortensen, "A quasi EM method for estimating multiple transmitter locations," IEEE Signal Processing Letters, Vol. 16, No. 5, May 2009.
doi:10.1109/LSP.2009.2016003

11. Dogandzic, A. and P. Amran, "Signal-strength based localization in wireless fading channels," Proc. Asilomar Conf. Signals, Systems, and Computers, 2160-2164, Nov. 2004.

12. Shuichi, O. and Z. Jens, "A body-shadowing model for indoor radio communication environments," IEEE Trans. on Ant. and Prop., Vol. 46, No. 6, June 1998.

13. Ghaddar, M., L. Talbi, T. A. Denidni, and A. Charbonneau, "Modeling human body effects for indoor radio channel using UTD," Canadian Conference on Electrical and Computer Engineering, 2004.

14. Zhao, Y., Y. Hao, and A. Alomainy, "UWB on-body radio channel modelling using ray theory and sub-band FDTD method," IEEE Trans. on Microwave Theory and Techniques, Special Issue on Ultra-wideband , 2006.

15. Welch, T. B., R. L. Musselman, B. A. Emessiene, P. D. Gift, D. K. Choudhury, D. N. Cassadine, and S. M. Yano, "The e®ects of the human body on UWB signal propagation in an indoor environment," IEEE Journal on Selected Areas in Communications, Vol. 20, No. 9, December 2002.
doi:10.1109/JSAC.2002.805243

16. Pradubphon, A., S. Promwong, M. Chamchoy, P. Supanakoon, and J. Takada, "Characterization of body shadowing effects on ultra-wideband propagation channel ," ICCAS, 2004.

17. Tayebi, A., J. Gomez, F. Saez de Adana, and O. Gutierrez, "The application of ray-tracing to mobile localization using the direction of arrival and received signal strength in multipath indoor environments ," Progress In Electromagnetics Research, Vol. 91, 1-15, 2009.
doi:10.2528/PIER09020301

18. Perez, C., M. L. Mediavilla, and M. C. Dez, "Efectos del trfico de personas sobre la atenuacin en el canal de propagacin en interiores," Simposium de la Unin Internacional de Radio (URSI), 1997 (in Spanish).

19. Saez de Adana, F., O. Gutierrez, I. Gonzalez, J. Perez, and M. F. Catedra, "Propagation model based on Ray-Tracing for the design of personal communication systems in indoor environments," IEEE Trans. Veh. Tech., Vol. 49, No. 6, 2000.
doi:10.1109/25.901882