Vol. 18
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-10-22
Total Difference Based Partial Sparse Lcmv Beamformer
By
Progress In Electromagnetics Research Letters, Vol. 18, 97-103, 2010
Abstract
Recent research demonstrates that sparse beam pattern constraint can suppress the sidelobe level of the linear constraint minimum variance beamformer. Here we improve the standard beam pattern by replacing it with a combination of a total difference minimization constraint on the mainlobe and a standard C1 norm minimization constraint on the sidelobe. As the new constraint matches the practical beam pattern better, the sidelobe level is further suppressed, while the robustness against the mismatch between the steering angle and the direction of arrival (DOA) of the desired signal, is maintained.
Citation
Yipeng Liu, and Qun Wan, "Total Difference Based Partial Sparse Lcmv Beamformer," Progress In Electromagnetics Research Letters, Vol. 18, 97-103, 2010.
doi:10.2528/PIERL10092705
References

1. Li, J. and P. Stoica, Robust Adaptive Beamforming, Wiley-Interscience, New York, 2006.

2. Li, J., P. Stoica, and Z. Wang, "Doubly constrained robust capon beamformer," IEEE Transactions on Signal Processing, Vol. 52, 2407-2423, 2004.
doi:10.1109/TSP.2004.831998

3. Zhang, L., W. Liu, and R. J. Langley, "A minimum variance beamformer with linear and quadratic constraints based on uniform linear antenna arrays," Antennas and Propagation Conference 2009 (LAPC 2009), 585-588, Loughborough, Nov. 16-17, 2009.

4. Savitha, R., S. Vigneswaran, S. Suresh, and N. Sundararajan, "Adaptive beamforming using complex-valued radial basis function neural networks," 2009 IEEE Region 10 Conference (TENCON 2009), 1-6, Singapore, Jan. 23-26, 2009.

5. Wax, M. and Y. Anu, "Performance analysis of the minimum variance beamformer," IEEE Transactions on Signal Processing, Vol. 44, No. 4, 938-947, Apr. 1996.
doi:10.1109/78.492546

6. Zhang, Y. B., P. Ng, and Q. Wan, "Sidelobe suppression for adaptive beamforming with sparse constraint on beam pattern," Electronics Letters, Vol. 44, No. 10, 615-616, May 2008.
doi:10.1049/el:20080415

7. Liu, Y., Q. Wan, and X. Chu, "A robust beamformer based on weighted sparse constraint," Progress In Electromagnetics Research Letters, Vol. 16, 53-60, 2010.
doi:10.2528/PIERL10062308

8. Lorenz, R. G. and S. P. Boyd, "Robust minimum variance beamforming," IEEE Transactions on Signal Processing, Vol. 53, No. 5, 1684-1696, May 2005.
doi:10.1109/TSP.2005.845436

9. Rao, B. D., K. Engan, S. F. Cotter, J. Palmer, and K. Kreutz-Delgado, "Subset selection in noise based on diversity measure minimization," IEEE Transactions on Signal Processing , Vol. 51, No. 3, 760-770, Mar. 2003.
doi:10.1109/TSP.2002.808076

10. Grant, M., S. Boyd, and Y. Ye, "cvx user guide for cvx version 1.1,", http://www.stanford.edu/ boyd/index.html.

11. Sturm, J., "Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones," Optimization Methods and Software, Vol. 11, No. 12, 625-653, 1999.
doi:10.1080/10556789908805766

12. Cox, H., "Resolving power and sensitivity to mismatch of optimum array processors," Journal of the Acoustic Society of America, Vol. 54, No. 3, 771-785, Sep. 973.
doi:10.1121/1.1913659