1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, Jan. 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
2. Pendry, J. B., A. J. Holden, and W. J. Stewart, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter., Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007 Google Scholar
4. Pendry, J. B., A. J. Holden, and D. L. Robbins, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory and Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
5. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
6. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, 489-491, 2001.
doi:10.1063/1.1343489 Google Scholar
7. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847 Google Scholar
8. Simovski, C. R. and L. X. He, "Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting omega particles," Phys. Lett. A, Vol. 311, 254-263, 2003.
doi:10.1016/S0375-9601(03)00494-8 Google Scholar
9. Chen, H. S., L. X. Ran, and J. T. Huangfu, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E, Vol. 70, 057605, 2004.
doi:10.1103/PhysRevE.70.057605 Google Scholar
10. Chen, H. S., L. X. Ran, and J. T. Huangfu, "Negative refraction of a combined double S-shaped metamaterial," Appl. Phys. Lett., Vol. 86, 151909, 2005.
doi:10.1063/1.1897045 Google Scholar
11. Liu, Y. H., C. R. Luo, and X. P. Zhao, "H-shaped structure of left-handed metamaterials with simultaneous negative permittivity and permeability," Acta Phys. Sinica, Vol. 56, 5883, 2007. Google Scholar
12. Kafesaki, M., I. Tsiapa, N. Katsarekes, T. Koschny, C. M. Soukoulis, and E. N. Economou, "Left-handed metamaterials: The fish-net structure and its variations," Phys. Rev. B, Vol. 75, 235114, 2007.
doi:10.1103/PhysRevB.75.235114 Google Scholar
13. Kern, D. J., D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, "The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surface," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 8-17, 2005.
doi:10.1109/TAP.2004.840540 Google Scholar
14. Yeo, J., J. F. Ma, R. Mittra, "GA-based design of artificial magnetic ground planes (AMGS) utilizing frequency-selective surfaces for bandwidth enhancement of microstrip antennas," Microw. Opt. Technol. Lett., Vol. 44, No. 1, 6-13, 2005.
doi:10.1002/mop.20532 Google Scholar
15. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, John Wiley & Sons, 1999.
16. Choo, H. and H. Ling, "Design of broadband and dual-band microstrip antennas on a high-dielectric substrate using a genetic algorithm," IEE Proc. --- Microw. Antennas Propag., Vol. 150, No. 3, 137-142, 2003.
doi:10.1049/ip-map:20030291 Google Scholar
17. Chakravarty, S., R. Mittra, and N. R. Williams, "On the application of the microgenetic algorithm to the design of broad-band microwave absorbers comprising frequency-selective surfaces embedded in multilayered dielectric media," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 6, 1050-1059, 2001.
doi:10.1109/22.925490 Google Scholar
18. Panduro, M. A., C. A. Brizuela, L. I. Balderas, and D. A. Acosta, "A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays," Progress In Electromagnetics Research B, Vol. 13, 171-186, 2009.
doi:10.2528/PIERB09011308 Google Scholar
19. Siakavara, K., "Novel fractal antenna arrays for satellite networks: Circular ring Sierpinski carpet arrays optimized by genetic algorithms," Progress In Electromagnetics Research, Vol. 103, 115-138, 2010.
doi:10.2528/PIER10020110 Google Scholar
20. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E,, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617 Google Scholar
21. Goldberg, D., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989.
22. Yee, K. S., "Numerical solution of intitial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. on AP, Vol. 14, 302-307, May 1966. Google Scholar
23. Luebbers, R. J., F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Trans. on EMC, Vol. 32, 222-227, Aug. 1990. Google Scholar
24. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from re°ection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104 Google Scholar
25. Chen, X. D., T. M. Grzegorezyk, B. I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608 Google Scholar