Vol. 28
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-03-03
Spectral Domain Analysis of a Circular Nano-Aperture Illuminating a Planar Layered Sample
By
Progress In Electromagnetics Research B, Vol. 28, 307-323, 2011
Abstract
A rigorous and efficient spectral domain formalism is presented of a plane wave-excited subwavelength circular aperture in a planar perfectly conducting metallic screen of infinitesimal thickness, based on the Bethe-Bouwkamp quasi-static model. The formulation utilizes a transmission line analogue of the medium, which facilitates the inclusion of planar multilayered material samples, where the latter may exhibit uniaxial anisotropy. The transmitted field components are expressed in terms of one-dimensional Hankel transform integrals, which can be evaluated by efficient numerical procedures. Sample results are presented showing the intensity profiles and polarization states of transmitted light penetrating into a semiconductor layer.
Citation
Krzysztof A. Michalski, "Spectral Domain Analysis of a Circular Nano-Aperture Illuminating a Planar Layered Sample," Progress In Electromagnetics Research B, Vol. 28, 307-323, 2011.
doi:10.2528/PIERB11011010
References

1. Bethe, H. A. and Theory of diffraction by small holes, "Phys. Rev.,", Vol. 66, 163-182, Oct. 1944.        Google Scholar

2. Bouwkamp, C. J., "On Bethe's theory of diffraction by small holes," Philips Res. Rep., Vol. 5, 321-332, Oct. 1950.
doi:10.1088/0034-4885/17/1/302        Google Scholar

3. Bouwkamp, C. J., "Diffraction theory," Rep. Progr. Phys., Vol. 17, 35-100, 1954.
doi:10.1063/1.337294        Google Scholar

4. Leviatan, Y., "Study of near-zone fields of a small aperture," J. Appl. Phys., Vol. 60, No. 5, 1577-1583, 1986.
doi:10.1063/1.336848        Google Scholar

5. Dürig, U., D. W. Pohl, and F. Rohner, "Near-field optical-scanning microscopy," J. Appl. Phys., Vol. 59, No. 10, 3318-3327, 1986.
doi:10.1080/09500349214550611        Google Scholar

6. Nakano, T. and S. Kawata, "Numerical analysis of the near-field diffraction pattern of a small aperture," J. Mod. Opt., Vol. 39, No. 3, 645-661, 1992.
doi:10.1126/science.262.5138.1422        Google Scholar

7. Betzig, E. and R. J. Chichester, "Single molecules observed by near-field scanning optical microscopy," Science, Vol. 262, 1422-1425, 1993.
doi:10.1364/JOSAA.12.000695        Google Scholar

8. Van Labeke, D., D. Barchiesi, and F. Baida, "Optical characterization of nanosources used in scanning near-field optical microscropy ," J. Opt. Soc. Am. A, Vol. 12, No. 4, 695-703, 1995.
doi:10.1016/0030-4018(94)00555-9        Google Scholar

9. Van Labeke, D., F. Baida, D. Barchiesi, and D. Courjon, "A theoretical model for the Inverse Scanning Tunneling Optical Microscope (ISTOM)," Opt. Commun., Vol. 114, 470-480, 1995.        Google Scholar

10. Grober, R. D., T. Rutherford, and T. D. Harris, "Modal approximation for the electromagnetic field of a near-field optical probe," Appl. Opt., Vol. 35, 3488-3494, Jul. 1996.
doi:10.1063/1.118783        Google Scholar

11. Decca, R. S., H. D. Drew, and K. L. Empson, "Investigation of the electric-field distribution at the subwavelength aperture of a near-field scanning optical microscope ," Appl. Phys. Lett., Vol. 70, No. 15, 1932-1934, 1997.
doi:10.1016/S0304-3991(97)00067-3        Google Scholar

12. Van Labeke, D., F. I. Baida, and J. Vigoureux, "A theoretical study of near-field detection and excitation of surface plasmons," Ultramicroscopy, Vol. 71, 351-359, 1998.
doi:10.1103/PhysRevB.58.2131        Google Scholar

13. Bryant, G. W., E. L. Shirley, L. S. Goldner, E. B. McDaniel, J. W. P. Hsu, and R. J. Tonucci, "Theory of probing a photonic crystal with transmission near-field optical microscopy," Phys. Rev. B, Vol. 58, No. 4, 2131-2141, 1998.
doi:10.1088/0268-1242/13/8/009        Google Scholar

14. Stevenson, R. and D. Richards, "The use of a near-field probe for the study of semiconductor heterostructures," Semicond. Sci. Technol., Vol. 13, 882-886, 1998.        Google Scholar

15. Baida, F. I. and D. Van Labeke, "Propagation and diffraction of locally excited surface plasmons," J. Opt. Soc. Am. A, Vol. 18, 1552-1561, Jul. 2001.
doi:10.1051/epjap:2004014        Google Scholar

16. Ducourtieux, S., S. Gresillon, J. C. Rivoal, C. Vannier, C. Bainier, D. Courjon, and H. Cory, "Imaging subwavelength holes in chromium films in scanning near-field optical microscopy. Comparison between experiments and calculation," Eur. Phys. J. Appl. Phys., Vol. 26, 35-43, 2004.        Google Scholar

17. Lin, Y., M. H. Hong, W. J. Wang, Z. B. Wang, G. X. Chen, Q. Xie, L. S. Tan, and T. C. Chong, "Surface nanostructuring by femtosecond laser irradiation through near-field scanning optical microscopy," Sens. Actuators A, Vol. 133, 311-316, 2007.        Google Scholar

18. Michalski, K. A., "Complex image method analysis of a plane wave-excited subwavelength circular aperture in a planar screen," Progress In Electromagnetics Research B, Vol. 27, 253-272, 2011.
doi:10.1364/OE.16.019342        Google Scholar

19. Bloemer, M. J., G. D'Aguanno, M. Scalora, N. Mattiucci, and D. de Ceglia, "Energy considerations for a superlens based on metal/dielectric multilayers ," Opt. Expr., Vol. 16, No. 23, 19342-19353, 2008.        Google Scholar

20. De Ceglia, D., M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D'Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, "Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges ," Phys. Rev. A, Vol. 77, 033848-1, 2008.        Google Scholar

21. Harrington, R. F., Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.

22. Rothwell, E. J. and M. J. Cloud, "Electromagnetics," CRC Press, Boca Raton, FL, 2009.        Google Scholar

23. Iizuka, K., Engineering Optics, 2nd Ed., Springer-Verlag, New York, 1987.

24. Tyras, G., "Radiation and Propagation of Electromagnetic Waves," Academic Press, New York, 1969.        Google Scholar

25. Michalski, K. A., "Extrapolation methods for Sommerfeld integral tails (Invited review paper) ," IEEE Trans. Antennas Propagat., Vol. 46, 1405-1418, Oct. 1998.        Google Scholar

26. Palik, E. D., Handbook of Optical Constants of Solids, Vol. 1, Academic Press, San Diego, 1998.

27. Schouten, H. F., T. D. Visser, D. Lenstra, and H. Blok, "Light transmission through a suwavelength slit: Waveguiding and optical vortices," Phys. Rev. E, Vol. 67, 036608-1-4, 2003.        Google Scholar

28. D'Aguanno, G., N. Mattiucci, M. Bloemer, and A. Desyatnikov, "Optical vortices during a superresolution process in a metamaterial," Phys. Rev. A, Vol. 77, 043825-1-4, 2008.        Google Scholar

29. Rumsey, V. H., "Some new forms of the Huygens' principle," IEEE Trans. Antennas Propagat., Vol. 7, S103-S115, Dec. 1959.        Google Scholar

30. Michalski, K. A., "Electromagnetic field computation in planar multilayers," Encyclopedia of RF and Microwave Engineering, K. Chang, Editor, Vol. 2, 1163-1190, Wiley-Interscience, 2005.
doi: --- Either ISSN or Journal title must be supplied.        Google Scholar