Vol. 17
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-03-30
Particle Swarm Optimization of Antenna Arrays with Efficiency Constraints
By
Progress In Electromagnetics Research M, Vol. 17, 237-251, 2011
Abstract
Phased array antennas are a viable solution to a number of problems related to radio communications applications. In this work, the multi-objective stochastic MOPSO algorithm is used to optimize the spatial configuration of a symmetric phased linear array. The defined optimization goals were the suppression of the radiation pattern sidelobes at a specified maximum scan angle as well as the minimization of the induced voltages correlation at the receiver frontend in order to maximize diversity performance. Non-linear constraints were enforced on the solution set, related to the multi-antenna system aperture efficiency and related to the mismatching when the array is scanned. The obtained optimized configurations for an array composed of 16 dipoles resulted in reducing the sidelobes up to 2.5 dB, when scanned 60° away from broadside, compared to a linear array with elements spaced λ/2 apart. Furthermore, the optimized dipole arrays were characterized by a maximum element correlation of 0.12 to 0.43. The performance of obtained configurations was shown to be tolerant to feed phase variations that appear in realistic implementations. The arrays were analyzed employing the Method of Moments (MoM).
Citation
Konstantinos A. Papadopoulos, C. A. Papagianni, P. K. Gkonis, I. S. Venieris, and Dimitra Kaklamani, "Particle Swarm Optimization of Antenna Arrays with Efficiency Constraints," Progress In Electromagnetics Research M, Vol. 17, 237-251, 2011.
doi:10.2528/PIERM11012504
References

1. Kennedy, J., "Swarm intelligence," Handbook of Nature-Inspired and Innovative Computing, 187-219, Springer, 2006.
doi:10.1007/0-387-27705-6_6

2. Li, W. T., X. W. Shi, and Y. Q. Hei, "An improved particle swarm optimization algorithm for pattern synthesis of phased arrays," Progress In Electromagnetics Research, Vol. 82, 319-332, 2008.
doi:10.2528/PIER08030904

3. Donelli, M., R. Azaro, F. G. B. De Natale, and A. Massa, "An innovative computational approach based on a particle swarm strategy for adaptive phased arrays control," IEEE Trans. Antennas Propagat., Vol. 54, No. 3, 888-898, 2006.
doi:10.1109/TAP.2006.869912

4. Boeringer, D. W. and D. H. Werner, "Efficiency-constrained particle swarm optimization of a modified bernstein polynomial for conformal array excitation amplitude synthesis," IEEE Trans. Antennas Propagat., Vol. 53, No. 8, 2662-2673, 2005.
doi:10.1109/TAP.2005.851783

5. Jin, , N. B. and Y. Rahmat-Samii, "Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs," IEEE Trans. Antennas Propagat., Vol. 53, No. 11, 3459-3468, 2005.
doi:10.1109/TAP.2005.858842

6. Coello, C. A. C., G. T. Pulido, and M. S. Lechuga, "Handling multiple objectives with particle swarm optimization," IEEE Trans. Evolutionary Comput., Vol. 8, No. 3, 256-279, 2004.
doi:10.1109/TEVC.2004.826067

7. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations," IEEE Trans. Antennas Propagat., Vol. 55, No. 3, 556-567, 2007.
doi:10.1109/TAP.2007.891552

8. Chamaani, S., M. S. Abrishamian, and S. A. Mirtaheri, "Multi-objective optimization of UWB monopole antenna," Progress In Electromagnetics Research C, Vol. 8, 83-94, 2009.
doi:10.2528/PIERC09040202

9. Bray, M. G., D. H. Werner, D. W. Boeringer, and D. W. Machuga, "Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning," IEEE Trans. Antennas Propagat., Vol. 50, No. 11, 1732-1742, 2003.

10. Zhu, Y. Z., Y. J. Xie, Z. Y. Lei, and T. Dang, "A novel method of mutual coupling matching for array antenna design," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1013-1024, 2007.

11. Wallace, J. W. and M. A. Jensen, "Termination-dependent diversity performance of coupled antennas: Network theory analysis," IEEE Trans. Antennas Propagat., Vol. 52, No. 1, 98-105, 2004.
doi:10.1109/TAP.2003.822444

12. Broyde, F. and E. Clavelier, "Taking advantage of mutual coupling in radio-communication systems using a multi-port antenna array," IEEE Antennas Propag. Mag., Vol. 4, No. 4, 208-220, 2007.
doi:10.1109/MAP.2007.4385646

13. Harrington, R. F., Field Computation by Moment Methods, Wiley-IEEE Press, 1993.
doi:10.1109/9780470544631

14. Orfanidis, S. J., Electromagnetic Waves and Antennas, Rutgers University, 2004.

15. Takamizawa, K., "Analysis of highly coupled wideband antenna arrays using scattering parameter network models,", 45-60, the Faculty of the Virginia Polytechnic Institute and State University, Virginia, 2002.

16. Pozar, D. M., Microwave Engineering, Wiley-India, 2009.

17. Weber, J., C. Volmer, K. Blau, R. Stephan, and M. A. Hein, "Miniaturized antenna arrays using decoupling networks with realistic elements," IEEE Trans. Microwave Theory and Tech., Vol. 54, No. 6, 2733-2740, 2006.
doi:10.1109/TMTT.2006.874874

18. Nebro, A. J., J. J. Durillo, J. Garcia-Nieto, C. A. C. Coello, F. Luna, and E. Alba, "SMPSO: A new PSO metaheuristic for multi-objective optimization," Proc. 2009 IEEE Symposium on Computational Intelligence in Multi-criteria Decision-making, 66-73, Mar. 30-Apr. 2, 2009.

19. Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, 2001.