1. Kennedy, J., "Swarm intelligence," Handbook of Nature-Inspired and Innovative Computing, 187-219, Springer, 2006.
doi:10.1007/0-387-27705-6_6
2. Li, W. T., X. W. Shi, and Y. Q. Hei, "An improved particle swarm optimization algorithm for pattern synthesis of phased arrays," Progress In Electromagnetics Research, Vol. 82, 319-332, 2008.
doi:10.2528/PIER08030904
3. Donelli, M., R. Azaro, F. G. B. De Natale, and A. Massa, "An innovative computational approach based on a particle swarm strategy for adaptive phased arrays control," IEEE Trans. Antennas Propagat., Vol. 54, No. 3, 888-898, 2006.
doi:10.1109/TAP.2006.869912
4. Boeringer, D. W. and D. H. Werner, "Efficiency-constrained particle swarm optimization of a modified bernstein polynomial for conformal array excitation amplitude synthesis," IEEE Trans. Antennas Propagat., Vol. 53, No. 8, 2662-2673, 2005.
doi:10.1109/TAP.2005.851783
5. Jin, , N. B. and Y. Rahmat-Samii, "Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs," IEEE Trans. Antennas Propagat., Vol. 53, No. 11, 3459-3468, 2005.
doi:10.1109/TAP.2005.858842
6. Coello, C. A. C., G. T. Pulido, and M. S. Lechuga, "Handling multiple objectives with particle swarm optimization," IEEE Trans. Evolutionary Comput., Vol. 8, No. 3, 256-279, 2004.
doi:10.1109/TEVC.2004.826067
7. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations," IEEE Trans. Antennas Propagat., Vol. 55, No. 3, 556-567, 2007.
doi:10.1109/TAP.2007.891552
8. Chamaani, S., M. S. Abrishamian, and S. A. Mirtaheri, "Multi-objective optimization of UWB monopole antenna," Progress In Electromagnetics Research C, Vol. 8, 83-94, 2009.
doi:10.2528/PIERC09040202
9. Bray, M. G., D. H. Werner, D. W. Boeringer, and D. W. Machuga, "Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning," IEEE Trans. Antennas Propagat., Vol. 50, No. 11, 1732-1742, 2003.
10. Zhu, Y. Z., Y. J. Xie, Z. Y. Lei, and T. Dang, "A novel method of mutual coupling matching for array antenna design," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1013-1024, 2007.
11. Wallace, J. W. and M. A. Jensen, "Termination-dependent diversity performance of coupled antennas: Network theory analysis," IEEE Trans. Antennas Propagat., Vol. 52, No. 1, 98-105, 2004.
doi:10.1109/TAP.2003.822444
12. Broyde, F. and E. Clavelier, "Taking advantage of mutual coupling in radio-communication systems using a multi-port antenna array," IEEE Antennas Propag. Mag., Vol. 4, No. 4, 208-220, 2007.
doi:10.1109/MAP.2007.4385646
13. Harrington, R. F., Field Computation by Moment Methods, Wiley-IEEE Press, 1993.
doi:10.1109/9780470544631
14. Orfanidis, S. J., Electromagnetic Waves and Antennas, Rutgers University, 2004.
15. Takamizawa, K., "Analysis of highly coupled wideband antenna arrays using scattering parameter network models,", 45-60, the Faculty of the Virginia Polytechnic Institute and State University, Virginia, 2002.
16. Pozar, D. M., Microwave Engineering, Wiley-India, 2009.
17. Weber, J., C. Volmer, K. Blau, R. Stephan, and M. A. Hein, "Miniaturized antenna arrays using decoupling networks with realistic elements," IEEE Trans. Microwave Theory and Tech., Vol. 54, No. 6, 2733-2740, 2006.
doi:10.1109/TMTT.2006.874874
18. Nebro, A. J., J. J. Durillo, J. Garcia-Nieto, C. A. C. Coello, F. Luna, and E. Alba, "SMPSO: A new PSO metaheuristic for multi-objective optimization," Proc. 2009 IEEE Symposium on Computational Intelligence in Multi-criteria Decision-making, 66-73, Mar. 30-Apr. 2, 2009.
19. Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, 2001.