Vol. 22
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-03-28
Analysis of Dispersion Relation of Piecewise Linear Recursive Convolution FDTD Method for Space-Varying Plasma
By
Progress In Electromagnetics Research Letters, Vol. 22, 83-93, 2011
Abstract
The dispersion relation of piecewise linear recursive convolution finite difference time domain (PLRC-FDTD) method for space-varying plasma is analyzed using a novel equivalent method. The equivalent dispersion and dissipation errors have been taken into account. The efficiency of the novel equivalent method is substantiated by computing the test and reference transmitted electric field. The comparison of the test and reference solutions validates that the equivalent method is an efficient method to analyze the dispersion relation of PLRC-FDTD method used for space-varying plasma.
Citation
Xia Ai, Yiping Han, Chang You Li, and Xiao-Wei Shi, "Analysis of Dispersion Relation of Piecewise Linear Recursive Convolution FDTD Method for Space-Varying Plasma," Progress In Electromagnetics Research Letters, Vol. 22, 83-93, 2011.
doi:10.2528/PIERL11012701
References

1. Taflove, A. and S. C. Hagness, "Computational Electromagnetics: Finite-difference Time-domain Method," Artech House, 2005.

2. Luebbers, R. J., F. Hunsberger, and K. S. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. on Antennas and Propagation, Vol. 39, 29-34, 1991.
doi:10.1109/8.64431

3. Kelley, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. on Antennas and Propagation, Vol. 44, 792-797, 1996.
doi:10.1109/8.509882

4. Young, J. L., "A full finite difference time domain implementation for radio wave propagation in a plasma," Radio Sci., Vol. 29, 1513-1522, 1994.
doi:10.1029/94RS01921

5. Chen, Q., M. Katsurai, and P. H. Aoyagi, "An FDTD formulation for dispersive media using a current density," IEEE Trans. on Antennas and Propagation, Vol. 46, 1739-1746, 1998.
doi:10.1109/8.736632

6. Lee, J. H. and D. K. Kalluri, "Three-dimensional FDTD simulation of electromagnetic wave transformation in a dynamic inhomogeneous magnetized plasma," IEEE Trans. on Antennas and Propagation, Vol. 47, 1146-1151, 1999.
doi:10.1109/8.785745

7. Han, Z., J. Ding, P. Chen, Z. Zhang, and C. Guo, "FDTD analysis of three-dimensional target covered with inhomogeneous unmagnetized plasma," 2010 International Conference on Microwave and Millimeter Wave Technology (ICMMT 2010), 125-128, Piscataway, NJ, USA, May 8-11, 2010.

8. Young, J. L., A. Kittichartphayak, Y. M. Kwok, and D. Sullivan, "On the dispersion errors related to (FD)2TD type schemes," IEEE Trans. on Microwave Theory and Techniques, Vol. 43, 1902-1910, 1995.
doi:10.1109/22.402280

9. Cummer, S. A., "An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy," IEEE Trans. on Antennas and Propagation, Vol. 45, 392-400, 1997.
doi:10.1109/8.558654

10. Li, X.-S. and B.-J. Hu, "FDTD analysis of a magneto-plasma antenna with uniform or nonuniform distribution," IEEE Antennas and Wireless Propagation Lett., Vol. 9, 175-178, 2010.
doi:10.1109/LAWP.2010.2044971

11. Qian, Z. H., R. S. Chen, K. W. Leung, and H. W. Yang, "FDTD analysis of microstrip patch antenna covered by plasma sheath," Progress In Electromagnetics Research, Vol. 52, 173-183, 2005.
doi:10.2528/PIER04080901

12. Christ, A., J. Frohlich, and N. Kuster, "Correction of numerical phase velocity errors in nonuniform FDTD meshes," IEICE Trans. on Communications, Vol. 85, 2904-2915, 2002.

13. Wei, B., S.-Q. Zhang, Y.-H. Dong, and F. Wang, "A general FDTD algorithm handling thin dispersive layer," Progress In Electromagnetics Research B, Vol. 18, 243-257, 2009.
doi:10.2528/PIERB09090306

14. Atteia, G. E. and K. F. A. Hussein, "Realistic model of dispersive soils using PLRC-FDTD with applications to GPR systems," Progress In Electromagnetics Research B, Vol. 26, 335-359, 2010.
doi:10.2528/PIERB10083102

15. Heh, D. Y. and E. L. Tan, "Dispersion analysis of FDTD schemes for doubly lossy media," Progress In Electromagnetics Research B, Vol. 17, 327-342, 2009.
doi:10.2528/PIERB09082802