1. August, W. R., Principles of High-Resolution Radar, Artech House Publishers, Boston, USA, 1996.
2. Son, J. S., G. Thomas, and B. C. Flores, Range-Doppler Radar Imaging and Motion Compensation, Artech House Publishers, London, UK, 2001.
3. Hamish, D. M., Modern Radar Systems, 2nd edition, Artech House Publishers, Boston, USA, 2008.
4. Odendaal, J. W., E. Barnard, and C. W. I. Pistorius, "Two-dimensional super-resolution radar imaging using the MUSIC algorithm," IEEE Trans. Antennas Propagat., Vol. 42, No. 10, 1386-1391, 1994.
doi:10.1109/8.320744 Google Scholar
5. Kim, K., D. Seo, and H. Kim, "Efficient radar target recognition using the MUSIC algorithm and invariant features," IEEE Trans. Antennas Propagat., Vol. 50, No. 3, 325-337, 2002.
doi:10.1109/8.999623 Google Scholar
6. Yoon, Y. and M. G. Amin, "High-resolution through-the-wall radar imaging using beamspace MUSIC," IEEE Trans. Antennas Propagat., Vol. 56, No. 6, 1763-1774, 2008.
doi:10.1109/TAP.2008.923336 Google Scholar
7. Roy, R., A. Paulraj, and T. Kailath, "ESPRIT - A subspace rotation approach to estimation of parameters of cisoids in noise," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 34, No. 5, 1340-1342, 1986.
doi:10.1109/TASSP.1986.1164935 Google Scholar
8. Roy, R. and T. Kailath, "ESPRIT - Estimation of signal parameters via rotational invariance techniques," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 37, No. 7, 984-995, 1989.
doi:10.1109/29.32276 Google Scholar
9. Rouquette, S. and M. Najim, "Estimation of frequencies and damping factors by two-dimensional ESPRIT type methods," IEEE Trans. Signal Processing, Vol. 49, No. 1, 237-245, 2001.
doi:10.1109/78.890367 Google Scholar
10. Schmidt, R., "Multiple emitter location and signal parameter estimation," Proc. RADC Spectral Estimation Workshop, Rome Air Development Center, New York, October 1979. Google Scholar
11. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propagat., Vol. 34, No. 3, 276-280, 1986.
doi:10.1109/TAP.1986.1143830 Google Scholar
12. Lee, H. B. and M. S. Wengrovitz, "Resolution threshold of beamspace MUSIC for two closely spaced emitters," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 38, No. 9, 1545-1559, 1990.
doi:10.1109/29.60074 Google Scholar
13. Yamada, H., M. Ohmiya, Y. Ogawa, and K. Itoh, "Super-resolution techniques for time-domain measurements with a network analyzer," IEEE Trans. Antennas Propagat., Vol. 39, No. 2, 177-183, 1991.
doi:10.1109/8.68179 Google Scholar
14. Li, F., H. Liu, and R. J. Vaccaro, "Performance analysis for DOA estimation algorithms: Unification, simplification, and observations," IEEE Trans. Aerosp. Electron. Syst., Vol. 29, No. 4, 1170-1184, 1993.
doi:10.1109/7.259520 Google Scholar
15. Cheng, C. and Y. Hua, "Performance analysis of the MUSIC and pencil-MUSIC algorithms for diversely polarized array," IEEE Trans. Signal Processing, Vol. 42, No. 11, 3150-3165, 1994.
doi:10.1109/78.330374 Google Scholar
16. Thompson, J. S., P. M. Grant, and B. Mulgrew, "Performance of spatial smoothing algorithms for correlated sources," IEEE Trans. Signal Processing, Vol. 44, No. 4, 1040-1046, 1996.
doi:10.1109/78.492567 Google Scholar
17. Astely, D. and B. Ottersten, "The effects of local scattering on direction of arrival estimation with MUSIC," IEEE Trans. Signal Processing, Vol. 47, No. 12, 3220-3234, 1999.
doi:10.1109/78.806068 Google Scholar
18. McCloud, M. L. and L. L. Scharf, "A new subspace identification algorithm for high-resolution DOA estimation," IEEE Trans. Antennas Propagat., Vol. 50, No. 10, 1382-1390, 2002.
doi:10.1109/TAP.2002.805244 Google Scholar
19. Charge, P., Y. Wang, and J. Saillard, "An extended cyclic MUSIC algorithm," IEEE Trans. Signal Processing, Vol. 51, No. 7, 1695-1701, 2003.
doi:10.1109/TSP.2003.812834 Google Scholar
20. Kim, J.-T., S.-H. Moon, D. Han, and M.-J. Cho, "Fast DOA estimation algorithm using pseudocovariance matrix," IEEE Trans. Antennas Propagat., Vol. 53, No. 4, 1346-1351, 2005.
doi:10.1109/TAP.2005.844459 Google Scholar
21. Abeida, H. and J.-P. Delmas, "MUSIC-like estimation of direction of arrival for noncircular sources," IEEE Trans. Signal Processing, Vol. 54, No. 7, 2678-2690, 2006.
doi:10.1109/TSP.2006.873505 Google Scholar
22. Ye, Z. and C. Liu, "2-D DOA estimation in the presence of mutual coupling," IEEE Trans. Antennas Propagat., Vol. 56, No. 10, 3150-3158, 2008.
doi:10.1109/TAP.2008.929446 Google Scholar
23. Zhang, Y. and B. P. Ng, "MUSIC-like DOA estimation without estimating the number of sources," IEEE Trans. Signal Processing, Vol. 58, No. 3, 1668-1676, 2010.
doi:10.1109/TSP.2009.2037074 Google Scholar
24. Barabell, A., "Improving the resolution performance of eigenstructure-based direction-finding algorithms," IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP'83 , 336-339, 1983.
doi:10.1109/ICASSP.1983.1172124 Google Scholar
25. Rao, B. D. and K. V. S. Hari, "Performance analysis of Root-Music," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 37, No. 12, 1939-1949, 1989.
doi:10.1109/29.45540 Google Scholar
26. Krim, H., P. Forster, and J. G. Proakis, "Operator approach to performance analysis of root-MUSIC and root-min-norm," IEEE Trans. Signal Processing, Vol. 40, No. 7, 1687-1696, 1992.
doi:10.1109/78.143441 Google Scholar
27. Shan, T., M. Wax, and T. Kailath, "On spatial smoothing for direction-of-arrival estimation of coherent signals," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 33, No. 4, 806-811, 1985.
doi:10.1109/TASSP.1985.1164649 Google Scholar
28. Haber, F. and M. Zoltowski, "Spatial spectrum estimation in a coherent signal environment using an array in motion," IEEE Trans. Antennas Propagat., Vol. 34, No. 4, 301-310, 1986.
doi:10.1109/TAP.1986.1143831 Google Scholar
29. Rao, B. D. and K. V. S. Hari, "Weighted subspace methods and spatial smoothing: Analysis and comparison," IEEE Trans. Signal Processing, Vol. 41, No. 2, 788-803, 1993.
doi:10.1109/78.193218 Google Scholar
30. Wang, H. and K. J. R. Liu, "2-D spatial smoothing for multipath coherent signal separation," IEEE Trans. Aerosp. Electron. Syst., Vol. 34, No. 2, 391-405, 1998.
doi:10.1109/7.670322 Google Scholar
31. Li, F. and R. J. Vaccaro, "Sensitivity analysis of DOA estimation algorithms to sensor errors," IEEE Trans. Aerosp. Electron. Syst., Vol. 28, No. 3, 708-717, 1992.
doi:10.1109/7.256292 Google Scholar
32. Ferreol, A., P. Larzabal, and M. Viberg, "On the resolution probability of MUSIC in presence of modeling errors," IEEE Trans. Signal Processing, Vol. 56, No. 5, 1945-1953, 2008.
doi:10.1109/TSP.2007.911482 Google Scholar
33. Kaveh, M. and A. Barabell, "The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 34, No. 2, 331-341, 1986.
doi:10.1109/TASSP.1986.1164815 Google Scholar
34. Kaveh, M. and A. Barabell, "The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 34, No. 3, 633-633, 1986.
doi:10.1109/TASSP.1986.1164841 Google Scholar
35. Choi, J. and I. Song, "Asymptotic distribution of the MUSIC null spectrum," IEEE Trans. Signal Processing, Vol. 41, No. 2, 985-988, 1993.
doi:10.1109/78.193240 Google Scholar
36. Messer, H. and Y. Rockah, "On the eigenstructure of the signal-only tempo-spatial covariance matrix of broad-band sources using a circular array," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 38, No. 3, 557-559, 1990.
doi:10.1109/29.106876 Google Scholar
37. Friedlander, B. and A. J. Weiss, "Direction finding using spatial smoothing with interpolated arrays," IEEE Trans. Aerosp. Electron. Syst., Vol. 28, No. 2, 574-587, 1992.
doi:10.1109/7.144583 Google Scholar
38. Gardner, W. A., "Simplification of MUSIC and ESPRIT by exploitation of cyclostationarity," Proceedings of the IEEE, Vol. 76, No. 7, 845-847, 1988.
doi:10.1109/5.7152 Google Scholar
39. Stoica, P. and A. Nehorai, "Performance comparison of subspace rotation and MUSIC methods for direction estimation," IEEE Trans. Signal Processing, Vol. 39, No. 2, 446-453, 1991.
doi:10.1109/78.80828 Google Scholar
40. Yu, X. and K. M. Buckley, "Bias and variance of direction-of-arrival estimates from MUSIC, MIN-NORM, and FINE," IEEE Trans. Signal Processing, Vol. 42, No. 7, 1812-1816, 1994.
doi:10.1109/78.298288 Google Scholar
41. Yeh, C.-C., J.-H. Lee, and Y.-M. Chen, "Estimating two-dimensional angles of arrival in coherent source environment," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 37, No. 1, 153-155, 1989.
doi:10.1109/29.17520 Google Scholar
42. Mathews, C. P. and M. D. Zoltowski, "Eigenstructure techniques for 2-D angle estimation with uniform circular arrays," IEEE Trans. Signal Processing, Vol. 42, No. 9, 2395-2407, 1994.
doi:10.1109/78.317861 Google Scholar
43. Wang, Y.-Y., L.-C. Lee, S.-J. Yang, and J.-T. Chen, "A tree structure one-dimensional based algorithm for estimating the two-dimensional direction of arrivals and its performance analysis," IEEE Trans. Antennas Propagat., Vol. 56, No. 1, 178-188, 2008.
doi:10.1109/TAP.2007.912945 Google Scholar
44. Wang, H. and K. J. R. Liu, "2-D spatial smoothing for multipath coherent signal separation," IEEE Trans. Aerosp. Electron. Syst., Vol. 34, No. 2, 391-405, 1998.
doi:10.1109/7.670322 Google Scholar
45. Lei, Z. and T. J. Lim, "Estimation of directions of arrival of multipath signals in CDMA systems," IEEE Trans. Commun., Vol. 48, No. 6, 1022-1028, 2000.
doi:10.1109/26.848564 Google Scholar
46. Chiang, C.-T. and A.-C. Chang, "DOA estimation in the asynchronous DS-CDMA system," IEEE Trans. Antennas Propagat. , Vol. 51, No. 1, 40-47, 2003.
doi:10.1109/TAP.2003.808547 Google Scholar
47. Li, J., Z.-S. Liu, and P. Stoica, "3-D target feature extraction via interferometric SAR," Radar, Sonar & Navigation, IET, Vol. 144, No. 2, 71-80, 1997.
doi:10.1049/ip-rsn:19970970 Google Scholar
48. Kim, K.-T., S.-W. Kim, and H.-T. Kim, "Two-dimensional ISAR imaging using full polarisation and super-resolution processing techniques," Radar, Sonar & Navigation, IET, Vol. 145, No. 4, 240-246, 1998.
doi:10.1049/ip-rsn:19982033 Google Scholar
49. Kim, K.-T., D.-K. Seo, and H.-T. Kim, "Radar target identification using one-dimensional scattering centres," Radar, Sonar & Navigation, IET, Vol. 148, No. 5, 285-296, 2001.
doi:10.1049/ip-rsn:20010473 Google Scholar
50. Miwa, T. and I. Arai, "Super-resolution imaging for point reflectors near transmitting and receiving array," IEEE Trans. Antennas Propagat., Vol. 52, No. 1, 220-229, 2004.
doi:10.1109/TAP.2003.820975 Google Scholar
51. Quinquis, A., E. Radoi, and F. C. Totir, "Some radar imagery results using Super-resolution techniques," IEEE Trans. Antennas Propagat., Vol. 52, No. 5, 1230-1244, 2004.
doi:10.1109/TAP.2004.827541 Google Scholar
52. Gini, F., F. Lombardini, and M. Montanari, "Layover solution in multibaseline SAR interferometry," IEEE Trans. Aerosp. Electron. Syst., Vol. 38, No. 4, 1344-1356, 2002.
doi:10.1109/TAES.2002.1145755 Google Scholar
53. Urazghildiiev, I., R. Ragnarsson, and A. Rydberg, "High-resolution estimation of ranges using multiple-frequency CW radar," IEEE Trans. Intell. Transport. Syst., Vol. 8, No. 2, 332-339, 2007.
doi:10.1109/TITS.2007.895287 Google Scholar
54. Secmen, M. and G. Turhan-Sayan, "Radar target classification method with reduced aspect dependency and improved noise performance using multiple signal classification algorithm," Radar, Sonar & Navigation, IET, Vol. 3, No. 6, 583-595, 2009.
doi:10.1049/iet-rsn.2008.0112 Google Scholar
55. Li, L., W. Zhang, and F. Li, "A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics," IEEE Trans. Geosci. Remote Sensing, Vol. 48, No. 1, 423-431, 2010.
doi:10.1109/TGRS.2009.2024686 Google Scholar
56. Zhang, W., A. Hoorfar, and L. Li, "Through-the-wall target localization with time reversal music method," Progress In Electromagnetics Research, Vol. 106, 75-89, 2010.
doi:10.2528/PIER10052408 Google Scholar
57. Lazarov, A. D., "Iterative MMSE method and recurrent Kalman procedure for ISAR imaging reconstruction," IEEE Trans. Aerosp. Electron., Vol. 37, 1432-1441, 2001.
doi:10.1109/7.976978 Google Scholar
58. Li, L., W. Zhang, and F. Li, "Tomographic reconstruction using the distorted rytov iterative method with phaseless data," IEEE Geoscience and Remote Sensing Letters, Vol. 5, 479-483, 2008.
doi:10.1109/LGRS.2007.907306 Google Scholar
59. Zhang, W., A. Hoorfar, and C. Thajudeen, "Polarimetric through-the-wall imaging," 2010 URSI International Symposium on Electromagnetic Theory (EMTS), 471-474, Berlin, Germany, 2010. Google Scholar
60. Zhang, W., L. Li, and F. Li, "Multifrequency imaging from intensity-only data using the phaseless data distorted Rytov iterative method," IEEE Trans. Antennas Propagat., Vol. 53, 290-294, 2009.
doi:10.1109/TAP.2008.2009785 Google Scholar
61. Hudson, J. E., Adaptive Array Principle, Peter Peregrinus Ltd., London, UK, 1981.
62. Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford University Press, Inc., New York, USA, 1965.