Vol. 31
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-06-26
Resolution Threshold Analysis of MUSIC Algorithm in Radar Range Imaging
By
Progress In Electromagnetics Research B, Vol. 31, 297-321, 2011
Abstract
Super-resolution algorithms used in radar imaging, e.g., MUltiple SIgnal Classification (MUSIC), can help us to get much higher resolution image beyond what is limited by the signal's bandwidth. We focus on MUSIC imaging algorithm in the paper and investigate the uniqueness and effectiveness conditions of the MUSIC algorithm when used in 1-D radar range imaging. Unlike conventional radar resolution analysis, we introduced the concept of resolution threshold from Direction of Arrival (DOA) into the MUSIC radar range imaging, we derive an approximate expression of theoretical resolution threshold for 1-D MUSIC imaging algorithm through the approach of asymptotic and statistical analysis to the null spectrum based on the perturbation theory of algebra and matrix theories. Monte Carlo simulations are presented to verify the work.
Citation
Xiang Gu, and Yunhua Zhang, "Resolution Threshold Analysis of MUSIC Algorithm in Radar Range Imaging," Progress In Electromagnetics Research B, Vol. 31, 297-321, 2011.
doi:10.2528/PIERB11040806
References

1. August, W. R., Principles of High-Resolution Radar, Artech House Publishers, Boston, USA, 1996.

2. Son, J. S., G. Thomas, and B. C. Flores, Range-Doppler Radar Imaging and Motion Compensation, Artech House Publishers, London, UK, 2001.

3. Hamish, D. M., Modern Radar Systems, 2nd edition, Artech House Publishers, Boston, USA, 2008.

4. Odendaal, J. W., E. Barnard, and C. W. I. Pistorius, "Two-dimensional super-resolution radar imaging using the MUSIC algorithm," IEEE Trans. Antennas Propagat., Vol. 42, No. 10, 1386-1391, 1994.
doi:10.1109/8.320744        Google Scholar

5. Kim, K., D. Seo, and H. Kim, "Efficient radar target recognition using the MUSIC algorithm and invariant features," IEEE Trans. Antennas Propagat., Vol. 50, No. 3, 325-337, 2002.
doi:10.1109/8.999623        Google Scholar

6. Yoon, Y. and M. G. Amin, "High-resolution through-the-wall radar imaging using beamspace MUSIC," IEEE Trans. Antennas Propagat., Vol. 56, No. 6, 1763-1774, 2008.
doi:10.1109/TAP.2008.923336        Google Scholar

7. Roy, R., A. Paulraj, and T. Kailath, "ESPRIT - A subspace rotation approach to estimation of parameters of cisoids in noise," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 34, No. 5, 1340-1342, 1986.
doi:10.1109/TASSP.1986.1164935        Google Scholar

8. Roy, R. and T. Kailath, "ESPRIT - Estimation of signal parameters via rotational invariance techniques," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 37, No. 7, 984-995, 1989.
doi:10.1109/29.32276        Google Scholar

9. Rouquette, S. and M. Najim, "Estimation of frequencies and damping factors by two-dimensional ESPRIT type methods," IEEE Trans. Signal Processing, Vol. 49, No. 1, 237-245, 2001.
doi:10.1109/78.890367        Google Scholar

10. Schmidt, R., "Multiple emitter location and signal parameter estimation," Proc. RADC Spectral Estimation Workshop, Rome Air Development Center, New York, October 1979.        Google Scholar

11. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propagat., Vol. 34, No. 3, 276-280, 1986.
doi:10.1109/TAP.1986.1143830        Google Scholar

12. Lee, H. B. and M. S. Wengrovitz, "Resolution threshold of beamspace MUSIC for two closely spaced emitters," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 38, No. 9, 1545-1559, 1990.
doi:10.1109/29.60074        Google Scholar

13. Yamada, H., M. Ohmiya, Y. Ogawa, and K. Itoh, "Super-resolution techniques for time-domain measurements with a network analyzer," IEEE Trans. Antennas Propagat., Vol. 39, No. 2, 177-183, 1991.
doi:10.1109/8.68179        Google Scholar

14. Li, F., H. Liu, and R. J. Vaccaro, "Performance analysis for DOA estimation algorithms: Unification, simplification, and observations," IEEE Trans. Aerosp. Electron. Syst., Vol. 29, No. 4, 1170-1184, 1993.
doi:10.1109/7.259520        Google Scholar

15. Cheng, C. and Y. Hua, "Performance analysis of the MUSIC and pencil-MUSIC algorithms for diversely polarized array," IEEE Trans. Signal Processing, Vol. 42, No. 11, 3150-3165, 1994.
doi:10.1109/78.330374        Google Scholar

16. Thompson, J. S., P. M. Grant, and B. Mulgrew, "Performance of spatial smoothing algorithms for correlated sources," IEEE Trans. Signal Processing, Vol. 44, No. 4, 1040-1046, 1996.
doi:10.1109/78.492567        Google Scholar

17. Astely, D. and B. Ottersten, "The effects of local scattering on direction of arrival estimation with MUSIC," IEEE Trans. Signal Processing, Vol. 47, No. 12, 3220-3234, 1999.
doi:10.1109/78.806068        Google Scholar

18. McCloud, M. L. and L. L. Scharf, "A new subspace identification algorithm for high-resolution DOA estimation," IEEE Trans. Antennas Propagat., Vol. 50, No. 10, 1382-1390, 2002.
doi:10.1109/TAP.2002.805244        Google Scholar

19. Charge, P., Y. Wang, and J. Saillard, "An extended cyclic MUSIC algorithm," IEEE Trans. Signal Processing, Vol. 51, No. 7, 1695-1701, 2003.
doi:10.1109/TSP.2003.812834        Google Scholar

20. Kim, J.-T., S.-H. Moon, D. Han, and M.-J. Cho, "Fast DOA estimation algorithm using pseudocovariance matrix," IEEE Trans. Antennas Propagat., Vol. 53, No. 4, 1346-1351, 2005.
doi:10.1109/TAP.2005.844459        Google Scholar

21. Abeida, H. and J.-P. Delmas, "MUSIC-like estimation of direction of arrival for noncircular sources," IEEE Trans. Signal Processing, Vol. 54, No. 7, 2678-2690, 2006.
doi:10.1109/TSP.2006.873505        Google Scholar

22. Ye, Z. and C. Liu, "2-D DOA estimation in the presence of mutual coupling," IEEE Trans. Antennas Propagat., Vol. 56, No. 10, 3150-3158, 2008.
doi:10.1109/TAP.2008.929446        Google Scholar

23. Zhang, Y. and B. P. Ng, "MUSIC-like DOA estimation without estimating the number of sources," IEEE Trans. Signal Processing, Vol. 58, No. 3, 1668-1676, 2010.
doi:10.1109/TSP.2009.2037074        Google Scholar

24. Barabell, A., "Improving the resolution performance of eigenstructure-based direction-finding algorithms," IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP'83 , 336-339, 1983.
doi:10.1109/ICASSP.1983.1172124        Google Scholar

25. Rao, B. D. and K. V. S. Hari, "Performance analysis of Root-Music," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 37, No. 12, 1939-1949, 1989.
doi:10.1109/29.45540        Google Scholar

26. Krim, H., P. Forster, and J. G. Proakis, "Operator approach to performance analysis of root-MUSIC and root-min-norm," IEEE Trans. Signal Processing, Vol. 40, No. 7, 1687-1696, 1992.
doi:10.1109/78.143441        Google Scholar

27. Shan, T., M. Wax, and T. Kailath, "On spatial smoothing for direction-of-arrival estimation of coherent signals," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 33, No. 4, 806-811, 1985.
doi:10.1109/TASSP.1985.1164649        Google Scholar

28. Haber, F. and M. Zoltowski, "Spatial spectrum estimation in a coherent signal environment using an array in motion," IEEE Trans. Antennas Propagat., Vol. 34, No. 4, 301-310, 1986.
doi:10.1109/TAP.1986.1143831        Google Scholar

29. Rao, B. D. and K. V. S. Hari, "Weighted subspace methods and spatial smoothing: Analysis and comparison," IEEE Trans. Signal Processing, Vol. 41, No. 2, 788-803, 1993.
doi:10.1109/78.193218        Google Scholar

30. Wang, H. and K. J. R. Liu, "2-D spatial smoothing for multipath coherent signal separation," IEEE Trans. Aerosp. Electron. Syst., Vol. 34, No. 2, 391-405, 1998.
doi:10.1109/7.670322        Google Scholar

31. Li, F. and R. J. Vaccaro, "Sensitivity analysis of DOA estimation algorithms to sensor errors," IEEE Trans. Aerosp. Electron. Syst., Vol. 28, No. 3, 708-717, 1992.
doi:10.1109/7.256292        Google Scholar

32. Ferreol, A., P. Larzabal, and M. Viberg, "On the resolution probability of MUSIC in presence of modeling errors," IEEE Trans. Signal Processing, Vol. 56, No. 5, 1945-1953, 2008.
doi:10.1109/TSP.2007.911482        Google Scholar

33. Kaveh, M. and A. Barabell, "The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 34, No. 2, 331-341, 1986.
doi:10.1109/TASSP.1986.1164815        Google Scholar

34. Kaveh, M. and A. Barabell, "The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 34, No. 3, 633-633, 1986.
doi:10.1109/TASSP.1986.1164841        Google Scholar

35. Choi, J. and I. Song, "Asymptotic distribution of the MUSIC null spectrum," IEEE Trans. Signal Processing, Vol. 41, No. 2, 985-988, 1993.
doi:10.1109/78.193240        Google Scholar

36. Messer, H. and Y. Rockah, "On the eigenstructure of the signal-only tempo-spatial covariance matrix of broad-band sources using a circular array," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 38, No. 3, 557-559, 1990.
doi:10.1109/29.106876        Google Scholar

37. Friedlander, B. and A. J. Weiss, "Direction finding using spatial smoothing with interpolated arrays," IEEE Trans. Aerosp. Electron. Syst., Vol. 28, No. 2, 574-587, 1992.
doi:10.1109/7.144583        Google Scholar

38. Gardner, W. A., "Simplification of MUSIC and ESPRIT by exploitation of cyclostationarity," Proceedings of the IEEE, Vol. 76, No. 7, 845-847, 1988.
doi:10.1109/5.7152        Google Scholar

39. Stoica, P. and A. Nehorai, "Performance comparison of subspace rotation and MUSIC methods for direction estimation," IEEE Trans. Signal Processing, Vol. 39, No. 2, 446-453, 1991.
doi:10.1109/78.80828        Google Scholar

40. Yu, X. and K. M. Buckley, "Bias and variance of direction-of-arrival estimates from MUSIC, MIN-NORM, and FINE," IEEE Trans. Signal Processing, Vol. 42, No. 7, 1812-1816, 1994.
doi:10.1109/78.298288        Google Scholar

41. Yeh, C.-C., J.-H. Lee, and Y.-M. Chen, "Estimating two-dimensional angles of arrival in coherent source environment," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 37, No. 1, 153-155, 1989.
doi:10.1109/29.17520        Google Scholar

42. Mathews, C. P. and M. D. Zoltowski, "Eigenstructure techniques for 2-D angle estimation with uniform circular arrays," IEEE Trans. Signal Processing, Vol. 42, No. 9, 2395-2407, 1994.
doi:10.1109/78.317861        Google Scholar

43. Wang, Y.-Y., L.-C. Lee, S.-J. Yang, and J.-T. Chen, "A tree structure one-dimensional based algorithm for estimating the two-dimensional direction of arrivals and its performance analysis," IEEE Trans. Antennas Propagat., Vol. 56, No. 1, 178-188, 2008.
doi:10.1109/TAP.2007.912945        Google Scholar

44. Wang, H. and K. J. R. Liu, "2-D spatial smoothing for multipath coherent signal separation," IEEE Trans. Aerosp. Electron. Syst., Vol. 34, No. 2, 391-405, 1998.
doi:10.1109/7.670322        Google Scholar

45. Lei, Z. and T. J. Lim, "Estimation of directions of arrival of multipath signals in CDMA systems," IEEE Trans. Commun., Vol. 48, No. 6, 1022-1028, 2000.
doi:10.1109/26.848564        Google Scholar

46. Chiang, C.-T. and A.-C. Chang, "DOA estimation in the asynchronous DS-CDMA system," IEEE Trans. Antennas Propagat. , Vol. 51, No. 1, 40-47, 2003.
doi:10.1109/TAP.2003.808547        Google Scholar

47. Li, J., Z.-S. Liu, and P. Stoica, "3-D target feature extraction via interferometric SAR," Radar, Sonar & Navigation, IET, Vol. 144, No. 2, 71-80, 1997.
doi:10.1049/ip-rsn:19970970        Google Scholar

48. Kim, K.-T., S.-W. Kim, and H.-T. Kim, "Two-dimensional ISAR imaging using full polarisation and super-resolution processing techniques," Radar, Sonar & Navigation, IET, Vol. 145, No. 4, 240-246, 1998.
doi:10.1049/ip-rsn:19982033        Google Scholar

49. Kim, K.-T., D.-K. Seo, and H.-T. Kim, "Radar target identification using one-dimensional scattering centres," Radar, Sonar & Navigation, IET, Vol. 148, No. 5, 285-296, 2001.
doi:10.1049/ip-rsn:20010473        Google Scholar

50. Miwa, T. and I. Arai, "Super-resolution imaging for point reflectors near transmitting and receiving array," IEEE Trans. Antennas Propagat., Vol. 52, No. 1, 220-229, 2004.
doi:10.1109/TAP.2003.820975        Google Scholar

51. Quinquis, A., E. Radoi, and F. C. Totir, "Some radar imagery results using Super-resolution techniques," IEEE Trans. Antennas Propagat., Vol. 52, No. 5, 1230-1244, 2004.
doi:10.1109/TAP.2004.827541        Google Scholar

52. Gini, F., F. Lombardini, and M. Montanari, "Layover solution in multibaseline SAR interferometry," IEEE Trans. Aerosp. Electron. Syst., Vol. 38, No. 4, 1344-1356, 2002.
doi:10.1109/TAES.2002.1145755        Google Scholar

53. Urazghildiiev, I., R. Ragnarsson, and A. Rydberg, "High-resolution estimation of ranges using multiple-frequency CW radar," IEEE Trans. Intell. Transport. Syst., Vol. 8, No. 2, 332-339, 2007.
doi:10.1109/TITS.2007.895287        Google Scholar

54. Secmen, M. and G. Turhan-Sayan, "Radar target classification method with reduced aspect dependency and improved noise performance using multiple signal classification algorithm," Radar, Sonar & Navigation, IET, Vol. 3, No. 6, 583-595, 2009.
doi:10.1049/iet-rsn.2008.0112        Google Scholar

55. Li, L., W. Zhang, and F. Li, "A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics," IEEE Trans. Geosci. Remote Sensing, Vol. 48, No. 1, 423-431, 2010.
doi:10.1109/TGRS.2009.2024686        Google Scholar

56. Zhang, W., A. Hoorfar, and L. Li, "Through-the-wall target localization with time reversal music method," Progress In Electromagnetics Research, Vol. 106, 75-89, 2010.
doi:10.2528/PIER10052408        Google Scholar

57. Lazarov, A. D., "Iterative MMSE method and recurrent Kalman procedure for ISAR imaging reconstruction," IEEE Trans. Aerosp. Electron., Vol. 37, 1432-1441, 2001.
doi:10.1109/7.976978        Google Scholar

58. Li, L., W. Zhang, and F. Li, "Tomographic reconstruction using the distorted rytov iterative method with phaseless data," IEEE Geoscience and Remote Sensing Letters, Vol. 5, 479-483, 2008.
doi:10.1109/LGRS.2007.907306        Google Scholar

59. Zhang, W., A. Hoorfar, and C. Thajudeen, "Polarimetric through-the-wall imaging," 2010 URSI International Symposium on Electromagnetic Theory (EMTS), 471-474, Berlin, Germany, 2010.        Google Scholar

60. Zhang, W., L. Li, and F. Li, "Multifrequency imaging from intensity-only data using the phaseless data distorted Rytov iterative method," IEEE Trans. Antennas Propagat., Vol. 53, 290-294, 2009.
doi:10.1109/TAP.2008.2009785        Google Scholar

61. Hudson, J. E., Adaptive Array Principle, Peter Peregrinus Ltd., London, UK, 1981.

62. Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford University Press, Inc., New York, USA, 1965.