1. Tretyakov, S. A. and A. A. Sochava, "Proposed composite material for nonre°ecting shields and antenna radomes," Electronics Letters, Vol. 29, 1048-1049, 1993.
doi:10.1049/el:19930699 Google Scholar
2. Pelet , P. and N. Engheta, "The theory of chirowaveguides," IEEE Trans. Antennas Propag., Vol. 38, 90-98, Jan. 1990.
doi:10.1109/8.43593 Google Scholar
3. Bohren, C. F., "Scattering of electromagnetic waves by an optically active cylinder," J. Colloid Interface Sci., Vol. 66, 1978.
doi:10.1016/0021-9797(78)90189-3 Google Scholar
4. Bohren, C. F., "Scattering of electromagnetic waves by an optically active spherical shell," J. Chem. Phys, Vol. 62, 1975.
doi:10.1063/1.430622 Google Scholar
5. Shi , Y. and C. H. Chan, "Solution to electromagnetic scattering by bi-isotropic media using multilevel Green's function interpolation method," Progress In Electromagnetics Research, Vol. 97, 259-274, 2009.
doi:10.2528/PIER09092001 Google Scholar
6. Shi, Y., X. Luan, J. Qin, C. J. Lv, and C. H. Liang, "Multilevel Green's function interpolation method solution of volume/surface integral equation for mixed conducting/bi-isotropic objects," Progress In Electromagnetics Research, Vol. 107, 239-252, 2010.
doi:10.2528/PIER10060209 Google Scholar
7. Mautz, J. R. and R. F. Harrington, "Radiation and scattering from bodies of revolution," Appl. Sci. Res., Vol. 20, 1969.
doi:10.1007/BF00382412 Google Scholar
8. Barber, , P. and C. Yeh, "Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies," Appl. Opt., Vol. 14, 2864-2872, Dec. 1975. Google Scholar
9. Wu, T. K. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Sci., 709-718, 1977.
doi:10.1029/RS012i005p00709 Google Scholar
10. Kucharski, A. A., "A method of moment solution for electromagnetic scattering by inhomogeneous dielectric bodies of revolution," IEEE Trans. Antennas Propag., Vol. 48, 1202-1210, Aug. 2000.
doi:10.1109/8.884488 Google Scholar
11. Worasawate, D., J. R. Mautz, and E. Arvas, "Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body," IEEE Trans. Antennas Propag., Vol. 51, 1077-1084, May 2003.
doi:10.1109/TAP.2003.811501 Google Scholar
12. Hasanovic, M., C. Mei, J. R. Mautz, and E. Arvas, "Scattering from 3-D inhomogeneous chiral bodies of arbitrary shape by the method of moments," IEEE Trans. Antennas Propag., Vol. 55, 1817-1825, Jun. 2007.
doi:10.1109/TAP.2007.898590 Google Scholar
13. Yuccer, M., J. R. Mautz, and E. Arvas, "Method of moments solution for the radar cross section of a chiral body of revolution," IEEE Trans. Antennas Propag., Vol. 53, 1163-1167, Mar. 2005.
doi:10.1109/TAP.2004.842664 Google Scholar
14. Wang , D. X., K. N. Yung, R. S. Chen, and P. Y. Lau, "Scattering characteristics of general bi-isotropic objects using surface integral equations," Radio Sci., Vol. 41, 2006.
doi:10.1029/2005RS003315 Google Scholar
15. Bao, J., D. X. Wang, and E. K. N. Yung, "Electromagnetic scattering from an arbitrarily shaped bi-isotropic body of revolution," IEEE Trans. Antennas Propag., Vol. 58, 1689-1698, May 2010.
doi:10.1109/TAP.2010.2055776 Google Scholar
16. Kalaee, P. and J. Rashed-Mohassel, "Investigation of dipole radiation pattern above a chiral media using 3d Bi-FDTD approach," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 75-86, 2009.
doi:10.1163/156939309787604706 Google Scholar
17. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, "Electromagnetic Waves in Chiral and Bi-isotropic Media," Artech House, Norwood, Mass, 1994. Google Scholar
18. Harrington, R. F., Field Computation by Moment Methods, Macmillan, 1968.
19. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
20. Bao , J., "Electromagnetic wave scattering from an arbitrarily shaped bi-isotropic body of revolution," M. Phil. Elect. Eng., City University of HK, Hong Kong, 2007. Google Scholar