Vol. 21
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-10-13
Diffraction of Plane Wave by Strip with Arbitrary Orientation of Wave Vector
By
Progress In Electromagnetics Research M, Vol. 21, 117-131, 2011
Abstract
The classical problem for diffraction of a plane wave with an arbitrarily oriented wave vector at a strip is considered asymptotically by Wiener-Hopf method. The boundary-value problem has been broken down into distinct Dirichlet and Neumann problems. Each of these boundary-value problems is consecutively solved by a reduction to a system of singular boundary integral equations and then to a system of Fredholm integral ones of second kind. They are solved effectively by a reduction to a system of linear algebraic equations with the help of the etalon integral and the saddle point method.
Citation
Seil S. Sautbekov, "Diffraction of Plane Wave by Strip with Arbitrary Orientation of Wave Vector," Progress In Electromagnetics Research M, Vol. 21, 117-131, 2011.
doi:10.2528/PIERM11071801
References

1. Sommerfeld, A., "Mathematische theorie der diffraktion," Mathe-matische Annalen, Vol. 47, No. 1, 317-374, 1896 (in German).

2. Born, M. and E. Wolf, "Principles of Optics," Pergamon, Oxford, 1969.

3. Honl, H., A. W. Maue, and K. Westpfahl, Theorie der Beugung, Springer, Berlin, 1961 (in German).

4. Jones, D. S., Acoustic and Electromagnetic Waves, Clarendon Press, Oxford, 1989.

5. Weinstein, L. A., "The Theory of Diffraction and the Factorization Method," Golem Press, Boulder, Colorado, 1969.

6. Leon, N. Z. and R. D. Hatcher, "Scattering of a plane wave of arbitrary diffraction of incidence by a metallic strip," Annals of the New York Academy of Sciences, Vol. 93, 303-330, May 1962.

7. Imran, A., Q. A. Naqvi, and K. Hongo, "Diffraction of electromagnetic plane wave by an impedance strip," Progress In Electromagnetics Research, Vol. 75, 303-318, 2007.
doi:10.2528/PIER07053104

8. Naveed, M., Q. A. Naqvi, and K. Hongo, "Diffraction of EM plane wave by a slit in an impedance plane using Malyuzhinets function," Progress In Electromagnetics Research B, Vol. 5, 265-273, 2008.
doi:10.2528/PIERB08021402

9. Ufimtsev, P. Ya., Theory of Edge Diffraction in Electromagnetics, Tech Science, 2003.

10. Sautbekov , S. S., "Factorization method for finite fine structures," Progress In Electromagnetics Research B, Vol. 25, 1-21, 2010.
doi:10.2528/PIERB10071801

11. Meixner, J., "The behavior of electromagnetic fields at edges," IEEE Trans. Antennas and Propagat., Vol. 20, No. 4, 442-446, 1972.
doi:10.1109/TAP.1972.1140243

12. Sommerfeld, A., Partial Differential Equations in Physics, Academic Press Inc., 1949.