1. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. on Microw. Theory and Tech., Vol. 47, No. 11, 2075-2084, Nov. 1999.
doi:10.1109/22.798002 Google Scholar
2. Falcone, F., T. Lopetegi, J. D. Baena, R. Marques, F. Martin, and M. Sorolla, "Effective negative-ε stopband microstrip lines based on complementary split ring resonators," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 6, 280-282, Jun. 2004.
doi:10.1109/LMWC.2004.828029 Google Scholar
3. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design. Theory and experiments," IEEE Trans. on Antennas and Propagation, Vol. 51, No. 10, 2572-2581, Oct. 2003.
doi:10.1109/TAP.2003.817562 Google Scholar
4. Marques, R., F. Medina, and R. Rafii-El-Idrissi, "Role of bian-isotropy in negative permeability and left-handed metamaterials," Phys. Rev. B., Vol. 65, 144440(1)-144440(6), 2002.
doi:10.1103/PhysRevB.65.100101 Google Scholar
5. Veselago , V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Uspekhi, Vol. 10, No. 4, 509-514, Jan. 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
6. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett., Vol. 93, No. 197, 401-404, Nov. 2004. Google Scholar
7. Ikalainen, P. K. and G. L. Matthaei, "Wide-band, forward-coupling microstrip hybrids with high directivity," IEEE Trans. on Microw. Theory and Tech., Vol. 35, No. 8, Aug. 1987. Google Scholar
8. Jarauta, E., M. A. Gomez-Laso, T. Lopetegi, F. Falcone, M. Beruete, J. D. Baena, A. Marcotegui, J. Bonache, J. Garcia, and R. Marques, "Novel microstrip backward coupler with metamaterial cells for fully planar fabrication techniques," Microwave and Optical Technology Letters, Vol. 48, No. 6, 1205-1209, 2006.
doi:10.1002/mop.21579 Google Scholar
9. Nguyen, H. V. and C. Caloz, "Generalized coupled-mode approach of metamaterial coupled-line couplers: Coupling theory, phenomenological explanation, and experimental demonstration," IEEE Trans. on Microw. Theory and Tech., Vol. 55, No. 5, 1029-1039, 2007.
doi:10.1109/TMTT.2007.895646 Google Scholar
10. Siso, , G., M. Gil, J. Bonache, and F. Martin, "Applications of resonant-type metamaterial transmission lines to the design of enhanced bandwidth components with compact dimensions," Microwave and Optical Technology Letters, Vol. 50, No. 1, 127-134, 2008.
doi:10.1002/mop.22990 Google Scholar
11. Niu , J. X. and X. L. Zhou, "A novel miniaturized hybrid ring using complementary split ring resonators," Microwave and Optical Technology Letters, Vol. 50, No. 3, 632-635, 2008.
doi:10.1002/mop.23170 Google Scholar
12. Hu, , X. and S. He, "Novel diplexer using composite right/left-handed transmission lines," Microwave and Optical Technology Letters, Vol. 50, No. 11, 2970-2973, 2008.
doi:10.1002/mop.23851 Google Scholar
13. Baen, J. D., J. Bonache, F. Martin, R. Marques, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia, I. Gil, M. Flores, and M. Sorolla, "Equivalent circuit models for split ring resonators and complementary split ring resonators coupled to planar transmission lines," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 4, 1451-1461, Apr. 2005.
doi:10.1109/TMTT.2005.845211 Google Scholar
14. Pozar, D. M., Microwave Engineering, John Wiley, 1998.