Vol. 21
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-10-07
Electrical Conductivity and Electromagnetic Shielding Effectiveness of Silicone Rubber Filled with Ferrite and Graphite Powders
By
Progress In Electromagnetics Research M, Vol. 21, 93-104, 2011
Abstract
There is increasing interest in electromagnetic interference (EMI) shielding due to the serious electromagnetic environment pollution caused by the continuously increased use of the electrical products and electronic devices. Electrical conductivity and EMI shielding effectiveness (SE) of composite materials made from silicone rubber with carbon powder and ferrite powder have been studied in microwaves and terahertz frequency ranges and the results are presented in this paper. In microwaves range, samples with higher electrical conductivity show a small variation of shielding performance with frequency, whereas the performance of samples with lower conductivity falls away with increasing frequency. It is shown that the variation of attenuation with frequency relates to the conductivity of the material.
Citation
Cristian Morari, Ionut Balan, Jana Pintea, Elena Chitanu, and Iulian Iordache, "Electrical Conductivity and Electromagnetic Shielding Effectiveness of Silicone Rubber Filled with Ferrite and Graphite Powders," Progress In Electromagnetics Research M, Vol. 21, 93-104, 2011.
doi:10.2528/PIERM11080406
References

1. Brzezinki, S., T. Rybicki, G. Malinowska, I. Karbownik, E. Rybicki, and L. Szugajew, "Effectiveness of shielding electromagnetic radiation, and assumptions for designing the multi-layer structures of textile shielding materials," Fibres & Textiles in Eastern Europe, Vol. 17, No. 1, 60-65, Jan./Mar. 2009.

2. Barba, A. A., G. Lamberti, M. D'Amore, and D. Acierno, "Carbon black/silicone rubber blends as absorbing materials to reduce Electro Magnetic Interferences (EMI)," Polymer Bulletin, Vol. 57, 587-593, 2006.
doi:10.1007/s00289-006-0598-z

3. Ahmad, M. S., M. K. Abdelazeez, A. Zihliv, E. Martuscelli, G. Ragosta, and E. Scafora, "Some properties of nickel-coated carbon fibre-polypropylene composite at microwave frequencies," J. Mater. Sci., Vol. 25, 3083-3088, 1990.
doi:10.1007/BF00587654

4. Paligova, M., J. Vilcakova, P. Saha, V. K·rsalek, J. Stejskal, and O. Quadrat, "Electromagnetic shielding of epoxy resin composites containing carbon fibers coated with polyaniline base," Physica A, Vol. 335, 421-429, 2004.
doi:10.1016/j.physa.2003.12.002

5. Lee, C. Y., H. G. Song, K. S. Jang, and E. J. Oh, "Electromagnetic interference shielding effciency of polyaniline mixtures and multilayer films," Synthetic Metals, Vol. 102, 1346-1349, 1999.
doi:10.1016/S0379-6779(98)00234-3

6. Duan, Y. P., S. H. Liu, and H. T. Guan, "Investigation of electrical conductivity and electromagnetic shielding effectiveness of polyaniline composite," Science and Technology of Advanced Materials, Vol. 6, 513-518, 2005.
doi:10.1016/j.stam.2005.01.002

7. Hu, Y.-J., H.-Y. Zhang, F. Li, X.-L. Cheng, and T.-L. Chen, "Investigation into electrical conductivity and electromagnetic interference shielding effectiveness of silicone rubber filled with Ag-coated cenosphere particles," Polymer Testing, Vol. 29, 609-612, 2010.
doi:10.1016/j.polymertesting.2010.03.009

8. Evans, R. W., "Design guidelines for shielding effectiveness, current carrying capability, and the enhancement of conductivity of composite materials,", NASA Contractor Report 4784, Tec-Masters, Inc., Huntsville, Alabama, Aug. 1997.

9. Chung, D. D. L., "Electromagnetic interference shielding effectiveness of carbon materials," Carbon, Vol. 39, 279-285, 2001.
doi:10.1016/S0008-6223(00)00184-6

10. Chung, D. D. L., "Materials for electromagnetic interference shielding," Journal of Materials Engineering and Performance, Vol. 9, 350-354, 2000.
doi:10.1361/105994900770346042

11. Al-Saleh, M. H. and U. Sundararaj, "Electromagnetic interference shielding mechanisms of CNT/polymer composites," Carbon, Vol. 47, 1738-1746, 2009.
doi:10.1016/j.carbon.2009.02.030

12. Schelkunoff, S. A., Electromagnetic Waves, D. Van Nostrand, Princeton, NJ, 1943.

13. Schulz, R. B., V. C. Plantz, and D. R. Brush, "Shielding theory and practice," IEEE Trans. on Electromagnetic Compatibility, Vol. 30, No. 3, 187-201, Aug. 1988.
doi:10.1109/15.3297

14. Rea, S., D. Linton, E. Orr, and J. McConnell, "Electromagnetic shielding properties of carbon fibre composites in avionic systems," Microwave Review, Vol. 11, No. 1, 29-32, Jun. 2005.

15. Yang, S., K. Lozano, A. Lomeli, H. D. Foltz, and R. Jones, "Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites," Composites: Part A, Vol. 36, 691-697, 2005.
doi:10.1016/j.compositesa.2004.07.009

16. Dragoman, D. and M. Dragoman, "Terahertz fields and applications," Progress in Quantum Electronics, Vol. 28, 1-66, 2004.
doi:10.1016/S0079-6727(03)00058-2

17. Aegerter, M. A., Sol-Gel Technologies for Glass Producers and Users, Kluwer Academic Pub., Jun. 2004.

18. Balanis, C. A., Advanced Engineering Electromagnetics, 42-94, John Wiley & Sons, Inc., New York, 1989.

19. Dosoudil, R., M. Usakova, J. Franek, J. Slama, and V. Olah, "RF electromagnetic wave absorbing properties of ferrite polymer composite materials," Journal of Magnetism and Magnetic Materials, Vol. 304, 755-757, 2006.
doi:10.1016/j.jmmm.2006.02.216

20. Lucyszyn, S. and Y. Zhou, "Characterising room temperature THz metal shielding using the engineering approach," Progress In Electromagnetics Research, Vol. 103, 17-31, 2010.
doi:10.2528/PIER10030801