Vol. 21
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-10-19
Uncertainty Propagation and Sensitivity Analysis in Ray-Tracing Simulations
By
Progress In Electromagnetics Research M, Vol. 21, 149-161, 2011
Abstract
Up to now, ray-tracing simulations are commonly used with a deterministic approach. Given the input parameters, the ray-tracing algorithm computes a value for the electric field. In this paper, we present a method that aims at computing the mean and standard deviation of the electric field. More precisely, we aim to obtain the probabilistic content of the electric field value and direction. We assume that this uncertainty results from input random variables which we consider uniformly distributed. Since ray-tracing computations have a high computational cost, we use spectral methods in order to optimize the number of simulations. We consider 2D electromagnetic propagation for the multi-path components, which can interact with the environment through four processes: transmission, single reflection, double reflection and diffraction. These are modelled using adequate coefficients. In order to calculate the polynomial chaos expansion coefficients, we use the projection method and Gauss-Legendre quadratures. These coefficients can then be used to determine the Sobol indices of input parameters. This is done in order to neglect variables in practical computation of the uncertainties.
Citation
Antoine Haarscher Philippe De Doncker David Lautru , "Uncertainty Propagation and Sensitivity Analysis in Ray-Tracing Simulations," Progress In Electromagnetics Research M, Vol. 21, 149-161, 2011.
doi:10.2528/PIERM11090103
http://www.jpier.org/PIERM/pier.php?paper=11090103
References

1. ICNIRP, "International commission on nonionizing radiation protection guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz)," Health. Phys., Vol. 74, No. 4, 494-522, 1998.

2. Wiener, N., "The homogeneous chaos ," Am. J. Math., Vol. 60, 897-936, 1938.
doi:10.2307/2371268

3. Ghanem, R. G. and P. C. Spanos, "Stochastic Finite Elements-a Spectral Approach," Springer, Berlin, 1991.

4. Sudret, B., "Global sensitivity analysis using polynomial chaos expansion," Reliab. Eng. Syst. Safety, Vol. 10, No. 1016, 2007.

5. Le Maitre, O. P. , M. Reagan, H. N. Najm, R. G. Ghanem, and O. M. Knio, "A stochastic projection for method for fluid flow II --- Random process," J. Comput. Phys., Vol. 181, 9-44, 2002.
doi:10.1006/jcph.2002.7104

6. Sudret, B., "Uncertainty propagation and sensitive analysis in mechanical models and contribution to structural reliability and stochastic spectral methods," Universite Blaise Pascal, Clermont-Ferrand, 2007.

7. Sobol, I. M., "Sensitivity estimates for nonlinear mathematical models," Math. Modeling. Comput. Exp., Vol. 1, No. 14, 407, 1993.

8. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.

9. Rohan, E., Introduction to Electromagnetic Wave Propagation, Artech, Boston, 1991.

10. Ida, N., "Engineering Electromagnetics," Springer-Verlag, 2004.

11. Luebbers, R., "Finite conductivity uniform GTD versus knife edge di®raction in prediction of propagation path loss," IEEE Trans. Antennas Propagat., Vol. 32, No. 1, 70-76, 1984.
doi:10.1109/TAP.1984.1143189