Vol. 22
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-11-13
FEM Modeling of Periodic Arrays of Multiwalled Carbon Nanotubes
By
Progress In Electromagnetics Research M, Vol. 22, 1-12, 2012
Abstract
Multiwalled carbon nanotubes display dielectric properties similar to those of graphite, which can be calculated using the well known Drude-Lorentz model. However, most computational softwares lack the capacity to directly incorporate this model into the simulations. We present the finite element modeling of optical propagation through periodic arrays of multiwalled carbon nanotubes. The dielectric function of nanotubes was incorporated into the model by using polynomial curve fitting technique. The computational analysis revealed interesting metamaterial filtering effects displayed by the highly dense square lattice arrays of carbon nanotubes, having lattice constants of the order few hundred nanometers. The curve fitting results for the dielectric function can also be used for simulating other interesting optical applications based on nanotube arrays.
Citation
Haider Butt, Timothy D. Wilkinson, and Gehan A. J. Amaratunga, "FEM Modeling of Periodic Arrays of Multiwalled Carbon Nanotubes," Progress In Electromagnetics Research M, Vol. 22, 1-12, 2012.
doi:10.2528/PIERM11090504
References

1. Iijima, S., "Helical microtubules of graphitic carbon," Nature, Vol. 354, 56-58, 1991.
doi:10.1038/354056a0

2. Baughman, R. H., A. A. Zakhidov, and W. A. de Heer, "Carbon nanotubes --- the route toward applications," Science, Vol. 297, 787-792, Aug. 2, 2002.
doi:10.1126/science.1060928

3. Deuk-Seok, C., S. H. Park, H. W. Lee, J. H. Choi, S. N. Cha, J. W. Kim, J. E. Jang, K. W. Min, S. H. Cho, M. J. Yoon, J. S. Lee, and C. K. Lee, "Carbon nanotube electron emitters with a gated structure using backside exposure processes," Applied Physics Letters, Vol. 80, 4045-4047, 2002.
doi:10.1063/1.1480104

4. Chen, Y., C. Liu, and Y. Tzeng, "Carbon-nanotube cold cathodes as non-contact electrical couplers," Diamond and Related Materials, Vol. 12, 1723-1728, 2003.
doi:10.1016/S0925-9635(03)00271-1

5. Zhang, J., G. Yang, Y. Cheng, B. Gao, Q. Qiu, Y. Z. Lee, J. P. Lu, and O. Zhou, "Stationary scanning x-ray source based on carbon nanotube field emitters," Applied Physics Letters, Vol. 86, 2005.

6. Junya, S., et al. "Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy," Journal of Physics D: Applied Physics, Vol. 36, L109, 2003.
doi:10.1088/0022-3727/36/21/L01

7. Wilkinson, T. D., X. Wang, K. B. K. Teo, and W. I. Milne, "Sparse multiwall carbon nanotube electrode arrays for liquid-crystal photonic devices," Advanced Materials, Vol. 20, 363-366, 2008.
doi:10.1002/adma.200701910

8. Zhou, H., A. Colli, A. Ahnood, Y. Yang, N. Rupesinghe, T. Butler, I. Haneef, P. Hiralal, A. Nathan, and G. A. J. Amaratunga, "Arrays of parallel connected coaxial multiwall-carbon- nanotube-amorphous-silicon solar cells," Advanced Materials, Vol. 21, 3919-3923, 2009.
doi:10.1002/adma.200901094

9. Ying, L. and Z. Baoqing, "Properties of carbon nanotube optical antennae," International Journal of Infrared and Millimeter Waves, Vol. 29, 990-996, 2008.
doi:10.1007/s10762-008-9390-5

10. Butt, H., Q. Dai, P. Farah, T. Butler, T. D. Wilkinson, J. J. Baumberg, and G. A. J. Amaratunga, "Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes," Applied Physics Letters, Vol. 97, 163102-3, 2010.

11. Kempa, K., B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, M. Sennett, M. Giersig, D. V. G. L. N. Rao, and D. L. Carnahan, "Photonic crystals based on periodic arrays of aligned carbon nanotubes," Nano Letters, Vol. 3, 13-18, 2003.
doi:10.1021/nl0258271

12. Teo, K. B. K., M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat, "Uniform patterned growth of carbon nanotubes without surface carbon," Applied Physics Letters, Vol. 79, 1534-1536, 2001.
doi:10.1063/1.1400085

13. Reyes-Esqueda, J. A., V. Rodriguez-Iglesias, H.-G. Silva-Pereyra, C. Torres-Torres, A.-L. Santiago-Ramirez, J. C. Cheang-Wong, A. Crespo-Sosa,L. Rodriguez-Fernandez, A. Lopez-Suarez, and A. Oliver, "Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites," Opt. Express, Vol. 17, 12849-12868, 2009.
doi:10.1364/OE.17.012849

14. Bommelia, F., L. Degiorgia, P. Wachtera, W. S. Bacsab, W. A. D. Heerb, and L. Forroc, "Evidence of anisotropic metallic behaviour in the optical properties of carbon nanotubes," Solid State Communications, Vol. 99, 513-517, 1996.
doi:10.1016/0038-1098(98)00161-6

15. Guo, G. Y., K. C. Chu, D.-S. Wang, and C.-G. Duan, "Linear and nonlinear optical properties of carbon nanotubes from first-principles calculations," Physical Review B, Vol. 69, 205416, 2004.
doi:10.1103/PhysRevB.69.205416

16. Lidorikis, E. and A. C. Ferrari, "Photonics with multiwall carbon nanotube arrays," ACS Nano, Vol. 3, 1238-1248, 2009.
doi:10.1021/nn900123a

17. Casiraghi, C., A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyun-yan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, "Rayleigh imaging of graphene and graphene layers," Nano Letters, Vol. 7, 2711-2717, 2007.
doi:10.1021/nl071168m

18. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," Journal of Physics: Condensed Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007

19. Butt, H., Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, "Photonic crystals & metamaterial filters based on 2D arrays of silicon nanopillars," Progress In Electromagnetics Research, Vol. 113, 179-194, 2011.

20. Wu, D., N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, "Terahertz plasmonic high pass filter," Applied Physics Letters, Vol. 83, 2003.

21. Sabah, C. and S. Uckun, "Multilayer system of lorentz/drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306

22. Lourtioz, J. M. and D. Pagnoux, Photonic Crystals: Towards Nanoscale Photonic Devices, Springer, Berlin, 2008.