1. Meana, J. G., J. A. Martinez-Lorenzo, F. Las-Heras, and C. Rappaport, "Wave scattering by dielectric and lossy materials using the modified equivalent current approximation (MECA)," IEEE Trans. on Antennas and Propag., Vol. 58, No. 11, 3757-3761, 2010.
doi:10.1109/TAP.2010.2071363 Google Scholar
2. Meana, J. G., J. A. Martinez-Lorenzo, F. Las-Heras, and C. Rappaport, "A PO-MoM comparison for electrically large dielectric geometries," IEEE Antennas and Propagation Society International Symposium, APSURSI'09, June 1-5, 2009. Google Scholar
3. James, G. L., Geometrical Theory of Diffraction for Electromagnetic Waves,, Peregrinus, Stevenage, U.K., 1980.
4. Lee, S. W., "Comparison of uniform asymptotic theory and Ufimtsev's theory of electromagnetic edge diffraction," IEEE Trans. on Antennas and Propag., Vol. 25, No. 2, 162-170, 1977.
doi:10.1109/TAP.1977.1141559 Google Scholar
5. Ufimtsev, P. Y., "Method of edge waves in the physical theory of diffraction,", Air Force System Command, Foreign Tech. Div., ID No. FTD-HC-23-259-71, 1971. Google Scholar
6. Ufimtsev, P. Y., Fundamentals of the Physical Theory of Diffraction, Wiley, New Jersey, 2007.
doi:10.1002/0470109017
7. Conde, O., J. Perez, and M. F. Catedra, "Stationary phase method application for the analysis of radiation of complex 3-D conducting structures," IEEE Trans. on Antennas and Propag., Vol. 49, No. 5, 724-731, 2001.
doi:10.1109/8.929626 Google Scholar
8. Saez de Adana, F., et al. Practical Applications of Asymptotic Techniques in Electromagnetics, Artech House, 2010.
9. Umul, Y. Z., "Modified theory of physical optics," Opt. Express, Vol. 12, No. 20, 4959-4972, 2004.
doi:10.1364/OPEX.12.004959 Google Scholar
10. Sakina, K., S. Cui, and M. Ando, "Mathematical derivation of modified edge representation for reduction of surface radiation integral," IEICE Trans. Electron., Vol. E84-C, No. 1, 74-83, 2001. Google Scholar
11. Shijo, T., L. Rodriguez, and M. Ando, "The modified-surface normal vectors in the physical optics," IEEE Trans. on Antennas and Propag., Vol. 56, No. 12, 3714-3722, 2008.
doi:10.1109/TAP.2008.2007276 Google Scholar
12. McNamara, D. A., C. W. I. Pistorius, and J. A. G. Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction, Artech House, Norwood, MA, 1990.
13. Staelin, D. H., A. W. Morgenthaler, and J. A. Kong, Electromagnetic Waves, Prentice Hall, USA, 1994.
14. Shijo, T. and M. Ando, "Elimination of fictitious penetrating rays from PO and hybridization with AFIM," Electrical Engineering in Japan, Vol. 150, No. 2, 2005. [Translated from Denki Gakkai Ronbunshi, Vol. 123-A, No. 12, 1185-1192, Dec. 2003]..
doi:10.1002/eej.20037 Google Scholar
15. Luebbers, R. J., "Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss," IEEE Trans. on Antennas and Propag., Vol. 32, No. 1, 70-76, 1984.
doi:10.1109/TAP.1984.1143189 Google Scholar
16. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Amer., Vol. 52, 116-130, 1962. Google Scholar
17. Soni, S. and A. Bhattacharya, "Novel three-dimensional dyadic diffraction coeffcient for wireless channel," Microwave and Optical Technology Letters, Vol. 52, No. 9, 2132-2136, 2010.
doi:10.1002/mop.25402 Google Scholar
18. Constantinides, E. D. and R. J. Marhefka, "A UGO/EUTD solution for the scattering and diffraction from cubic polynomial strips," IEEE Trans. on Antennas and Propag., Vol. 41, No. 8, 1088-1098, 1993.
doi:10.1109/8.244650 Google Scholar
19. Gomez-Sousa, H., J. A. Martinez-Lorenzo, O. Rubinos-Lopez, J. G. Meana, M. Grana-Varela, B. Gonzalez-Valdes, and M. Arias-Acuna, "Strategies for improving the use of the memory hierarchy in an implementation of the modified equivalent current approximation (MECA) method," ACES Journal, Vol. 25, No. 10, 841-852, 2010. Google Scholar
20. Gennarelli, G. and G. Riccio, "Diffraction by a lossy double-negative metamaterial layer: A uniform asymptotic solution," Progress In Electromagnetics Research Letters, Vol. 13, 173-180, 2010.
doi:10.2528/PIERL10030906 Google Scholar
21. Medgyesi-Mitschang, L. N., J. M. Putnam, and M. B. Gedera, "Generalized method of moments for three-dimensional penetrable scatterers," J. Opt. Soc. Amer. A, Vol. 11, No. 4, 1383-1398, 1994.
doi:10.1364/JOSAA.11.001383 Google Scholar
22. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly-conducting surface," Proc. IEEE, Vol. 62, No. 11, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651 Google Scholar
23. Menendez, R. C. and S. W. Lee, "On the role of the geometrical optics field in aperture diffraction," IEEE Trans. on Antennas and Propag., Vol. 25, No. 5, 688-695, 1977.
doi:10.1109/TAP.1977.1141651 Google Scholar