Vol. 23
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-02-17
Three-Dimensional Wedge Diffraction Correction Deduced by the Stationary Phase Method on the Modified Equivalent Current Approximation (Meca)
By
Progress In Electromagnetics Research M, Vol. 23, 207-227, 2012
Abstract
This paper presents a new method for computing fields diffracted by a wedge for the MECA formulation, which is valid not only for perfect electric conductors but also for lossy penetrable dielectrics. The method is based on the computation of a wedge correction matrix, which establishes a mapping function between fields incident at and diffracted by the wedge. The MECA method is based, in general, upon the oblique incidence of a plane wave at the interface between free space and lossy dielectric media. MECA reduces to the well-studied physical optics (PO) formulation in case of PEC (perfect electric conductor) scatterers. In this work, we consider a scenario involving diffraction caused by a plane wavefront incident on a wedge with flat faces and straight edge. The version of the stationary phase method for three-dimensional equivalent source distributions is employed to calculate the asymptotic contribution of the integration boundary along the edge of the diffraction wedge. This contribution of the critical boundary points is compared to the GTD (geometrical theory of diffraction) diffracted field in order to obtain the correction matrix by which the incident electric field vector is multiplied in MECA. As required to accomplish this comparison, the three-dimensional incident electric field is previously resolved into an edge-fixed coordinate system. Good agreement is demonstrated between full-wave method-of-moments (MoM) results and the results obtained by modifying MECA with our diffraction correction technique. is demonstrated between full-wave method-of-moments (MoM) results and the results obtained by modifying MECA with our diffraction correction technique.
Citation
Hipolito Gomez-Sousa Jose Angel Martinez-Lorenzo Oscar Rubiños-López , "Three-Dimensional Wedge Diffraction Correction Deduced by the Stationary Phase Method on the Modified Equivalent Current Approximation (Meca)," Progress In Electromagnetics Research M, Vol. 23, 207-227, 2012.
doi:10.2528/PIERM11111808
http://www.jpier.org/PIERM/pier.php?paper=11111808
References

1. Meana, J. G., J. A. Martinez-Lorenzo, F. Las-Heras, and C. Rappaport, "Wave scattering by dielectric and lossy materials using the modified equivalent current approximation (MECA)," IEEE Trans. on Antennas and Propag., Vol. 58, No. 11, 3757-3761, 2010.
doi:10.1109/TAP.2010.2071363

2. Meana, J. G., J. A. Martinez-Lorenzo, F. Las-Heras, and C. Rappaport, "A PO-MoM comparison for electrically large dielectric geometries," IEEE Antennas and Propagation Society International Symposium, APSURSI'09, June 1-5, 2009.

3. James, G. L., Geometrical Theory of Diffraction for Electromagnetic Waves,, Peregrinus, Stevenage, U.K., 1980.

4. Lee, S. W., "Comparison of uniform asymptotic theory and Ufimtsev's theory of electromagnetic edge diffraction," IEEE Trans. on Antennas and Propag., Vol. 25, No. 2, 162-170, 1977.
doi:10.1109/TAP.1977.1141559

5. Ufimtsev, P. Y., "Method of edge waves in the physical theory of diffraction,", Air Force System Command, Foreign Tech. Div., ID No. FTD-HC-23-259-71, 1971.

6. Ufimtsev, P. Y., Fundamentals of the Physical Theory of Diffraction, Wiley, New Jersey, 2007.
doi:10.1002/0470109017

7. Conde, O., J. Perez, and M. F. Catedra, "Stationary phase method application for the analysis of radiation of complex 3-D conducting structures," IEEE Trans. on Antennas and Propag., Vol. 49, No. 5, 724-731, 2001.
doi:10.1109/8.929626

8. Saez de Adana, F., et al., Practical Applications of Asymptotic Techniques in Electromagnetics, Artech House, 2010.

9. Umul, Y. Z., "Modified theory of physical optics," Opt. Express, Vol. 12, No. 20, 4959-4972, 2004.
doi:10.1364/OPEX.12.004959

10. Sakina, K., S. Cui, and M. Ando, "Mathematical derivation of modified edge representation for reduction of surface radiation integral," IEICE Trans. Electron., Vol. E84-C, No. 1, 74-83, 2001.

11. Shijo, T., L. Rodriguez, and M. Ando, "The modified-surface normal vectors in the physical optics," IEEE Trans. on Antennas and Propag., Vol. 56, No. 12, 3714-3722, 2008.
doi:10.1109/TAP.2008.2007276

12. McNamara, D. A., C. W. I. Pistorius, and J. A. G. Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction, Artech House, Norwood, MA, 1990.

13. Staelin, D. H., A. W. Morgenthaler, and J. A. Kong, Electromagnetic Waves, Prentice Hall, USA, 1994.

14. Shijo, T. and M. Ando, "Elimination of fictitious penetrating rays from PO and hybridization with AFIM," Electrical Engineering in Japan, Vol. 150, No. 2, 2005. [Translated from Denki Gakkai Ronbunshi, Vol. 123-A, No. 12, 1185-1192, Dec. 2003]..
doi:10.1002/eej.20037

15. Luebbers, R. J., "Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss," IEEE Trans. on Antennas and Propag., Vol. 32, No. 1, 70-76, 1984.
doi:10.1109/TAP.1984.1143189

16. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Amer., Vol. 52, 116-130, 1962.

17. Soni, S. and A. Bhattacharya, "Novel three-dimensional dyadic diffraction coeffcient for wireless channel," Microwave and Optical Technology Letters, Vol. 52, No. 9, 2132-2136, 2010.
doi:10.1002/mop.25402

18. Constantinides, E. D. and R. J. Marhefka, "A UGO/EUTD solution for the scattering and diffraction from cubic polynomial strips," IEEE Trans. on Antennas and Propag., Vol. 41, No. 8, 1088-1098, 1993.
doi:10.1109/8.244650

19. Gomez-Sousa, H., J. A. Martinez-Lorenzo, O. Rubinos-Lopez, J. G. Meana, M. Grana-Varela, B. Gonzalez-Valdes, and M. Arias-Acuna, "Strategies for improving the use of the memory hierarchy in an implementation of the modified equivalent current approximation (MECA) method," ACES Journal, Vol. 25, No. 10, 841-852, 2010.

20. Gennarelli, G. and G. Riccio, "Diffraction by a lossy double-negative metamaterial layer: A uniform asymptotic solution," Progress In Electromagnetics Research Letters, Vol. 13, 173-180, 2010.
doi:10.2528/PIERL10030906

21. Medgyesi-Mitschang, L. N., J. M. Putnam, and M. B. Gedera, "Generalized method of moments for three-dimensional penetrable scatterers," J. Opt. Soc. Amer. A, Vol. 11, No. 4, 1383-1398, 1994.
doi:10.1364/JOSAA.11.001383

22. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly-conducting surface," Proc. IEEE, Vol. 62, No. 11, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651

23. Menendez, R. C. and S. W. Lee, "On the role of the geometrical optics field in aperture diffraction," IEEE Trans. on Antennas and Propag., Vol. 25, No. 5, 688-695, 1977.
doi:10.1109/TAP.1977.1141651