Vol. 39
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-03-15
Four-Dimensional SAR Imaging Scheme Based on Compressive Sensing
By
Progress In Electromagnetics Research B, Vol. 39, 225-239, 2012
Abstract
The observation data obtained from 4-D synthetic aperture radar system is sparse and non-uniform in the baseline-time plane. Hence, the imaging results acquired by traditional Fourier-based methods are limited by high sidelobes. Considering the sparse structure of actual target space in high frequency radar application, a novel 4-D imaging scheme based on compressive sensing is proposed in this paper. Firstly, the azimuth-slant range image is acquired by traditional pulse compression. Then, the basis matrix and the measurement matrix are constructed based on the sparse distribution of the radar positions and the signal form after the azimuth-slant range compression. Moreover, a weighted matrix related to the supporting field of the target is introduced to the cost function. Finally, the elevation-velocity image is reconstructed with this new cost function. Simulation results confirm the effectiveness of the proposed method.
Citation
Xiao-Zhen Ren, Yong Feng Li, and Ruliang Yang, "Four-Dimensional SAR Imaging Scheme Based on Compressive Sensing," Progress In Electromagnetics Research B, Vol. 39, 225-239, 2012.
doi:10.2528/PIERB11121212
References

1. Chan, Y. K. and V. C. Koo, "An introduction to synthetic aperture radar (SAR)," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.
doi:10.2528/PIERB07110101        Google Scholar

2. Tian, B., D. Y. Zhu, and Z. D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011.        Google Scholar

3. Chang, Y. L., C. Y. Chiang, and K. S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
doi:10.2528/PIER11061507        Google Scholar

4. Zhang, M., Y. W. Zhao, H. Chen, and W. Q. Jiang, "SAR image simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research, Vol. 113, 395-412, 2011.
doi:10.2528/PIER11071501        Google Scholar

5. Reigber, A. and A. Moreira, "First demonstration of airborne SAR tomography using multibaseline L-band data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 5, 2142-2150, 2000.
doi:10.1109/36.868873        Google Scholar

6. Ren, X. Z., L. H. Qiao, and Y. Qin, "A three-dimensional imaging algorithm for tomography SAR based on improved interpolated array transform," Progress In Electromagnetics Research, Vol. 120, 181-193, 2011.        Google Scholar

7. Regiber, A. and R. Scheiber, "Airborne differential SAR interferometry: First results at L-band," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 6, 1516-1520, 2003.
doi:10.1109/TGRS.2003.814610        Google Scholar

8. Wu, B. I., M. C. Yeuing, Y. Hara, and J. A. Kong, "Insar height inversion by using 3-D phase projection with multiple baselines," Progress In Electromagnetics Research, Vol. 91, 173-193, 2009.
doi:10.2528/PIER09020902        Google Scholar

9. Lombardini, F., "Differential tomography: A new framework for SAR interferometry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 1, 1-8, 2005.
doi:10.1109/TGRS.2004.838371        Google Scholar

10. Soleimani, M., C. N. Mitchell, R. Banasiak, R. Wajman, and A. Adler, "Four-dimensional electrical capacitance tomography imaging using experimental data," Progress In Electromagnetics Research, Vol. 90, 171-186, 2009.
doi:10.2528/PIER09010202        Google Scholar

11. Goharian, M., M. Soleimani, and G. R. Moran, "A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009.
doi:10.2528/PIER09052003        Google Scholar

12. Wei, H. Y. and M. Soleimani, "Three-dimensional magnetic induction tomography imaging using a matrix free Krylov subspace inversion algorithm," Progress In Electromagnetics Research, Vol. 122, 29-45, 2012.
doi:10.2528/PIER11091513        Google Scholar

13. Banasiak, R., R. Wajman, D. Sankowski, and M. Soleimani, "Three-dimensional nonlinear inversion of electrical capacitance tomography data using a complete sensor model," Progress In Electromagnetics Research, Vol. 100, 219-234, 2010.
doi:10.2528/PIER09111201        Google Scholar

14. Serafino, F., F. Soldovieri, F. Lombardini, and G. Fornaro, "Singular value decomposition applied to 4D SAR imaging," IEEE International Geoscience and Remote Sensing Symposium, 2701-2704, Seoul, Korea, 2005.

15. Ren, X. Z. and R. L. Yang, "An inverse problem based approach for differential SAR tomography imaging," Journal of Electronics & Information Technology, Vol. 32, No. 3, 582-586, 2010.
doi:10.3724/SP.J.1146.2009.00259        Google Scholar

16. Fornaro, G., F. Serafino, and D. Reale, "4D SAR imaging for height estimation and monitoring of single and double scatterers," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 1, 224-237, 2009.
doi:10.1109/TGRS.2008.2000837        Google Scholar

17. Wei, S. J., X. L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805        Google Scholar

18. Wei, S. J., X. L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, 2011.        Google Scholar

19. Budillon, A., A. Evangelista, and G. Schirinzi, "Three-dimensional SAR focusing from multipass signals using compressive sampling," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 1, 488-499, 2010.
doi:10.1109/TGRS.2010.2054099        Google Scholar

20. Zhu, X. X. and R. Bamler, "Tomography SAR Inversion by L1-norm regularization --- The compressive sensing approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 10, 3839-3846, 2010.
doi:10.1109/TGRS.2010.2048117        Google Scholar

21. Potter, L. C., P. Schniter, and J. Ziniel, "Sparse reconstruction for radar," Proceedings of SPIE, Vol. 6970, 697003-1-697003-15, Orlando, FL, USA, 2008.

22. Fornaro, G., F. Serafino, and F. Soldovieri, "Three-dimensional focusing with multipass SAR data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 3, 507-517, 2003.
doi:10.1109/TGRS.2003.809934        Google Scholar

23. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582        Google Scholar

24. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083        Google Scholar

25. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, 21-30, 2008.
doi:10.1109/MSP.2007.914731        Google Scholar

26. Candes, E. J., M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted l1 minimization," Journal of Fourier Analysis and Applications, Vol. 14, No. 5, 877-905, 2008.
doi:10.1007/s00041-008-9045-x        Google Scholar