1. Huber, D., R. Bauknecht, C. Bergamaschi, M. Bitter, A. Huber, T. Morf, A. Neiger, M. Rohner, I. Schnyder, V. Schwarz, and A. Jackel, "InP-InGaAs single HBT technology for photo receiver OEICs at 40 Gb/s and beyond," J. Lightwave Technol., Vol. 18, No. 7, 992-1000, Jul. 2000.
doi:10.1109/50.850745
2. Cohen, E., Y. Betser, B. Sheinman, S. Cohen, S. Sidorov, A. Gavrilov, and D. Ritter, "75 GHz InP HBT distributed amplifier with record figures of merit and low power dissipation," IEEE Transactions on Electron Devices, Vol. 53, 2006-2008, 2006.
3. Kraus, S., D. Cohen-Elias, S. Cohen, A. Gavrilov, O. Karni, Y. Swirski, G. Eisenstein, and D. Ritter, "High-gain top illuminated optoelectronic integrated receiver," 19th International Conference on Indium Phosphide and Related Materials, 77-80, May 14--18, 2007.
4. Scott, J., K. Ghorbani, A. Mitchell, M. Austin, and L. Bui, "Multi-wavelength variable drive-voltage modulator for use in high dynamic range photonic links," Proceedings of Asia-Pacific Microwave Conference, 2007.
5. Boglione, L., "Power and linearity performance of a cascode InGaP/GaAs HBT distributed amplifier for instrument applications," 2003 IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 2217-2220, 2003.
doi:10.1109/MWSYM.2003.1210605
6. Koh, M. and G. Ellis, "Broadband linearization of InGaP/GaAs HBT power amplifier," Proceedings of European Microwave Conference, 878-881, Sep. 2010.
7. Taher, S. and J. Scott, "A comparison of InP HBT transimpedance amplifier topologies for high dynamic range photonic links," Proceedings of Asia-Pacific Microwave Conference, 2009.
8. Kobayashi, K. W., R. Esfandiari, and A. K. Oki, "A novel HBT distributed amplifier design topology based on attenuation compensation techniques," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 12, 2583-2589, 1994.
doi:10.1109/22.339800
9. Kim, T. and K. Yang, "A new large-signal InP/InGaAs Single HBT model including self-heating and impact ionization effects," IEEE MTT-S Int. Microwave Symp. Dig., Vol. 3, 2141-2144, 2002.
10. Sewiolo, B., D. Kissinger, G. Fischer, and R. Weigel, "A high-gain high-linearity distributed amplifier for ultra-wideband-applications using a low cost SiGe BiCMOS technology," IEEE 10th Annual Wireless and Microwave Technology Conference, 2009.
11. Walker, J., "Some observations on the design and performance of distributed amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 1, 164-168, 1992.
doi:10.1109/22.108338
12. Fraysse, J. P., J. P. Viaud, P. Q. R. Campovecchio, M. Auxemery, and R. Quere, "A 2 W, high efficiency, 2--8 GHz, cascode HBT MMIC power distributed amplifier," 2000 IEEE MTT-S Microwave Symposium Digest, Vol. 1, 529-532, 2000.
13. Minghao, K., G. A. Ellis, and T. C. Soon, "Effects of output low impedance termination to linearity of GaAs HBT power amplifier," 2010 International Conference on Intelligent and Advanced Systems (ICIAS), 1-4, June 15--17, 2010.
14. Ruan, Y., Y.-H. Liu, L. Chen, and Z.-S. Lai, "A 2.4 GHz fully-integrated SiGe BiCMOS power amplifier," Journal of Electronics and Information Technology, Vol. 33, No. 12, 3035-3039, Dec. 2011.
15. Ciccognani, W., E. Limiti, P. E. Longhi, C. Mitrano, A. Nanni, and M. Peroni, An ultra-broadband robust LNA for defence applications in AlGaN/GaN technology, IEEE IMS Dig., Anaheim, CA, May 2010.
16. Pengelly, R., S. Sheppard, T. Smith, B. Pribble, S. Wood, and C. Platis, Commercial GaN devices for switching and low-noise applications, CS MANTECH Conference, Palm Springs, CA, May 16--19, 2011.
17. Lee, C.-I., W.-C. Lin, and J.-M. Lin, "Low-power and high-linearity SiGe HBT low-noise amplifier using IM3 cancellation technique," Microelectronic Engineering, Vol. 91, No. 3, 59-63, 2011.
18. Pan, H.-Y. M. and L. E. Larson, "An improved broadband high linearity SiGe HBT differential amplifier," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 58, No. 8, 1685-1694, Aug. 2011.
doi:10.1109/TCSI.2010.2103191
19. Maazouzi, L. E., A. Mediavilla, and P. Colantonio, "A contribution to linearity improvement of a highly efficient Pa for WiMAX applications," Progress In Electromagnetics Research, Vol. 119, 59-84, 2011.
doi:10.2528/PIER11051602