1. Zhao, X.-W., X.-J. Dang, Y. Zhang, and C.-H. Liang, "The multilevel fast multipole algorithm for EMC analysis of multiple antennas on electrically large platforms," Progress In Electromagnetics Research, Vol. 69, 161-176, 2007.
doi:10.2528/PIER06121003 Google Scholar
2. Ali, M. and S. Sanyal, "A numerical investigation of finite ground planes and re°ector e®ects on monopole antenna factor using FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1379-1392, 2007.
doi:10.1163/156939307783239410 Google Scholar
3. Lei, J.-Z., C.-H. Liang, W. Ding, and Y. Zhang, "EMC analysis of antennas mounted on electrically large platforms with parallel FDTD method," Progress In Electromagnetics Research, Vol. 84, 205-220, 2008.
doi:10.2528/PIER08071303 Google Scholar
4. Lei, J. Z., C. H. Liang, and Y. Zhang, "Study on shielding effectiveness of metallic cavities with apertures by combining parallel FDTD method with windowing technique," Progress In Electromagnetics Research, Vol. 74, 85-112, 2007.
doi:10.2528/PIER07041905 Google Scholar
5. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
6. Taflove, A. and S. Hagness, "Computational Electrodynamics: The Finite-difference Time-domain Method," Artech House, Boston, MA, 2005. Google Scholar
7. Garcia, S. G., A. R. Bretones, B. G. Olmedo, and R. G. Martin, "Finite difference time domain methods," Time Domain Techniques in Computational Electromagnetics, D. Poljak (ed.), 91-132, WIT Press, 2003. Google Scholar
8. Garcia, S. G., A. R. Bretones, B. G. Olmedo, and R. G. Martin, "New trends in FDTD methods in computational electrodynamics: Unconditionally stable schemes," Recent Res. Development in Electronics, Transworld Research Network, 2005. Google Scholar
9. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, No. 1, 185-200, 1994.
doi:10.1006/jcph.1994.1159 Google Scholar
10., [Online] Available: http:://www.hirf-se.eu. Google Scholar
11. The Certification Of Aircraft Electrical And Electronic Systems For Operation In The High-intensity Radiated Fields (hirf ) Environment, Federal Aviation Administration Std. AC No: 20-158, Jul. 2007.
12. Guide to Certification of Aircraft in a High Intensity Radiated Field (HIRF) Environment, EUROCAE Std., Rev. EUROCAE ED-107, March 2001/SAE ARP 5583, Rev. A, Jun. 2010.
13. Georgakopoulos, A. V., C. R. Birtcher, and C. A. Balanis, "HIRF penetration through apertures: FDTD versus measurements," IEEE Transactions on Electromagnetic Compatibility, Vol. 43, No. 3, 282-294, Aug. 2001.
doi:10.1109/15.942601 Google Scholar
14., http://www.ugrfdtd.es.aspx.
doi:10.1109/15.942601 Google Scholar
16. Berenger, J.-P., "A multiwire formalism for the FDTD method," IEEE Transactions on Electromagnetic Compatibility, Vol. 42, No. 3, 257-264, 2000.
doi:10.1109/15.865332 Google Scholar
17. Guiffaut, , C., A. Reineix, and B. Pecqueux, "New oblique thin wire formalism in the FDTD method with multiwire junctions," IEEE Transactions on Antennas and Propagation, No. 99, 2011, early Access. Google Scholar
18. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley, 1989.