Vol. 40
Latest Volume
All Volumes
PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-05-15
Properties of Omnidirectional Photonic Band Gaps in Fibonacci Quasi-Periodic One-Dimensional Superconductor Photonic Crystals
By
Progress In Electromagnetics Research B, Vol. 40, 415-431, 2012
Abstract
In this paper, the properties of the omnidirectional photonic band gap (OBG) realized by one-dimensional (1D) Fibonacci quasi-periodic structure which is composed of superconductor and isotropic dielectric have been theoretically investigated by the transfer matrix method (TMM). From the numerical results, it has been shown that this OBG is insensitive to the incident angle and the polarization of electromagnetic wave (EM wave), and the frequency range and central frequency of OBG cease to change with increasing Fibonacci order, but vary with the ambient temperature of system, the thickness of the superconductor, and dielectric layer, respectively. The bandwidth of OBG can be notably enlarged with increasing the superconductor thickness. Moreover, the frequency range of OBG can be narrowed with increasing the thickness of dielectric layer and ambient temperature. The damping coefficient of superconductor layers has no effect on the frequency range of OBG under low-temperature conditions. It is shown that Fibonacci quasi-periodic 1D superconductor dielectric photonic crystals (SDPCs) have a superior feature in the enhancement frequency range of OBG. This kind of OBG has potential applications in filters, microcavities, and fibers, etc.
Citation
Hai Feng Zhang Shaobin Liu Xiang-Kun Kong Bo-Rui Bian Xin Zhao , "Properties of Omnidirectional Photonic Band Gaps in Fibonacci Quasi-Periodic One-Dimensional Superconductor Photonic Crystals," Progress In Electromagnetics Research B, Vol. 40, 415-431, 2012.
doi:10.2528/PIERB12040406
http://www.jpier.org/PIERB/pier.php?paper=12040406
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disorder dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Leung, K. M. and Y. F. Chang, "Full vector wave calculation of photonic band structures in face-centered-face dielectric media," Phys. Rev. Lett., Vol. 65, 2646-2649, 1990.
doi:10.1103/PhysRevLett.65.2646

4. Zhang, Z. and S. Satpathy, "Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations," Phys. Rev. Lett., Vol. 65, 2650-2653, 1990.
doi:10.1103/PhysRevLett.65.2650

5. Yablonovitch, E., T. J. Gmitter, and K. M. Leung, "Photonic band structure: The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett., Vol. 67, 2295-2298, 1991.
doi:10.1103/PhysRevLett.67.2295

6. Li, Z. Y. and Y. Xia, "Omnidirectional absolute band gaps in two-dimensional photonic crystals," Phys. Rev. B, Vol. 64, 153108, 2001.
doi:10.1103/PhysRevB.64.153108

7. Hart, S. D., G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopulos, and Y. Fink, "External reflection from omnidirectional dielectric mirror fibers," Science, Vol. 296, 510-513, 2002.
doi:10.1126/science.1070050

8. Winn, J. N., Y. Fink, S. Fan, and J. D. Joannopulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Opt. Lett., Vol. 23, 1573-1575, 1998.
doi:10.1364/OL.23.001573

9. Fan, S., P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B, Vol. 54, 11245-11252, 1996.
doi:10.1103/PhysRevB.54.11245

10. Johnson, S. G. and J. D. Joannopoulos, "Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap ," Appl. Phys. Lett., Vol. 77, 3490-3492, 2000.
doi:10.1063/1.1328369

11. Qiang, H., L. Jiang, W. Jia, and X. Li, "Analysis of enlargement of the omnidirectional total reflection band in a special kind of photonic crystals based on the incident angle domain ," Optic., Vol. 122, 345-348, 2011.

12. Negro, L. D., C. J. Oton, Z. Gaburro, L. Pavesi, P. Johson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, "Light transport through the band-edge states of Fibonacci Quasicrystals," Phys. Rev. Lett., Vol. 90, 055501, 2003.
doi:10.1103/PhysRevLett.90.055501

13. Bayindir, M., E. Cubukcu, I. Bulu, and E. Ozbay, "Photonic band-gap effect, localization, and waveguiding in the two-dimensional Penrose lattice," Phys. Rev. B, Vol. 63, 161104, 2000.
doi:10.1103/PhysRevB.63.161104

14. Peng, R. W., M. Wang, A. Hu, S. S. Jiang, G. J. Jin, and D. Feng, "Photonic localization in one-dimensional K-component Fibonacci structures ," Phys. Rev. B, Vol. 57, 1544-1551, 1998.
doi:10.1103/PhysRevB.57.1544

15. Hattori, T., N. Tsurumachi, S. Kawato, and H. Nakatsuka, "Photonic dispersion relation in a one-dimensional quasicrystal," Phys. Rev. B, Vol. 50, 4420-4421, 1994.
doi:10.1103/PhysRevB.50.4220

16. Abdelaziz, K. B., J. Zaghdoudi, M. Kanzari, and B. Rezig, "A broad omnidirectional reflection band obtained from deformed Fibonacci quasi-periodic one dimensional photonic crystals ," J. Opt. A: Pure Appl. Opt., Vol. 7, 544-549, 2005.
doi:10.1088/1464-4258/7/10/005

17. Maciǎ, E., "Optical engineering with Fibonacci dielectric multilayers," Appl. Phys. Lett., Vol. 73, 3330-3332, 1998.
doi:10.1063/1.122759

18. Hsueh, W. J., C. T. Chen, and C. H. Chen, "Omnidirectional band gap in Fibonacci photonic crystals with metamaterials using a band-edge formalism," Phys. Rev. A, Vol. 78, 013836, 2008.
doi:10.1103/PhysRevA.78.013836

19. Brouno-Alfonso, A., E. Reyes-Gómez, S. B. Cavalcanti, and L. E. Oliveira, "Band edge states of the < n >= 0 gap of Fibonacci photonic lattices ," Phys. Rev. A, Vol. 78, 035801, 2008.
doi:10.1103/PhysRevA.78.035801

20. Deng, X. H., J. T. Liu, J. H. Huang, L. Zou, and N. H. Liu, "Omnidirectional bandgaps in Fabonacci quasicrystals containing single-negative materials," J. Phys.: Condens. Matter, Vol. 22, 055403, 2010.
doi:10.1088/0953-8984/22/5/055403

21. Kushwaha, M. S. and G. Martinez, "Band-gap engineering in two-dimensional semiconductor-dielectric photonic crystals," Phys. Rev. E, Vol. 71, 027601, 2005.
doi:10.1103/PhysRevE.71.027601

22. Kuzmiak, V. and A. A. Maradudin, "Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation ," Phys. Rev. B, Vol. 55, 7427-7444, 1997.
doi:10.1103/PhysRevB.55.7427

23. Zhang, H. F., S. B. Liu, X. X. Kong, L. Zou, C. Li, and W. Qing, "Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer," Phys. Plasmas, Vol. 19, 022103, 2012.
doi:10.1063/1.3680628

24. Chen, Y. B., C. Zhang, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, "Tunable photonic crystals with superconductor constituents," Materials Letter, Vol. 55, 12-16, 2002.
doi:10.1016/S0167-577X(01)00610-3

25. Thapa, K. B., S. Srivastava, and S. Tiwai, "Enlarged photonic band gap in heterostructure of metallic photonic and superconducting photonic crystals," J. Supercond. Nov. Magn., Vol. 23, 517-525, 2010.
doi:10.1007/s10948-010-0644-9

26. Lyubchanskii, I. L., N. N. Dadonenkova, A. E. Zabolotin, Y. P. Lee, and T. Rasing, "A one-dimensional photonic crystals with a superconducting defect layer," J. Optic A: Pure Appl. Opt., Vol. 11, 114014, 2009.
doi:10.1088/1464-4258/11/11/114014

27. Wu, C.-J., "Transmission and reflection in a periodic superconductor/dielectric film multilayer structure," Journal of Electromagnetic Wave and Applications, Vol. 19, No. 15, 1991-1996, 2005.
doi:10.1163/156939305775570468

28. H. M., J. C. Wu, "Transmittance spectra in one-dimensional superconductor-dielectric photonic crystals," J. Appl. Phys., Vol. 107, 09E149, 2010.

29. Aly, A. H., S. W. Ryu, H. T. Hsu, and C. J. Wu, "THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattic," Material Chemistry and Physics, Vol. 113, 382-384, 2009.
doi:10.1016/j.matchemphys.2008.07.123

30. Wu, J. J. and J. X. Gao, "Transmission properties of Fibonacci quasi-periodic one-dimensional superconducting photonic crystals," Optic., 2011, doi:10.1016/j.ijleo.2011.07.015.

31. Lin, W. H., C. J. Wu, T. J. Yang, and S. J. Chang, "Terahertz multichanneled filter in a superconducting photonic crystals," Optics Express, Vol. 18, 27155-27166, 2010.
doi:10.1364/OE.18.027155

32. Li, C. Z., S. B. Liu, X. K. Kong, B. R. Bian, and X. Y. Zhang, "Tunable photonic bandgap in a one-dimensional superconducting-dielectric superlattice ," Applied Optic., Vol. 50, 2370-2375, 2011.
doi:10.1364/AO.50.002370

33. Dai, X., Y. Xiang, and S. Wen, "Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor," Progress In Electromagnetics Research, Vol. 120, 17-34, 2011.

34. Lee, H. Y. and T. Yao, "Design and evaluation of omnidirectional one-dimensional photonic crystals," J. Appl. Phy., Vol. 93, 819-837, 2003.
doi:10.1063/1.1530726