1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059, 1987.
doi:10.1103/PhysRevLett.58.2059 Google Scholar
2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486, 1987.
doi:10.1103/PhysRevLett.58.2486 Google Scholar
3. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals, Princeton University Press, Princeton, 1995.
4. Soukoulis, C. M., Photonic Band Gap Materials, NATO ASI, Kluwer Academic Publishers, Dordrecht, 1986.
5. Suthar, B. and A. Bhargava, "Tunable multi-channel filtering using 1-D photonic quantum well structures," Progress In Electromagnetics Research Letters, Vol. 27, 43-51, 2011.
doi:10.2528/PIERL11072208 Google Scholar
6. Bhargava, A. and B. Suthar, "Optical switching properties of kerrnonlinear chalcogenide photonic crystal," J. of Ovonic Research, Vol. 5, No. 6, 187, 2009. Google Scholar
7. Li, B., J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, "Ferroelectric inverse opals with electrically tunable photonic band gap," Appl. Phys. Lett., Vol. 83, 4704, 2003.
doi:10.1063/1.1631737 Google Scholar
8. Kumar, V., K. S. Singh, S. K. Singh, and S. P. Ojha, "Broadening of omnidirectional photonic band gap in Si-based one-dimensional photonic crystals," Progress In Electromagnetics Research M, Vol. 14, 101-111, 2010.
doi:10.2528/PIERM10062807 Google Scholar
9. Wang, X., K. Kempa, Z. F. Ren, and B. Kimball, "Rapid photon flux switching in two-dimensional photonic crystals," Appl. Phys. Lett., Vol. 84, 1817, 2004.
doi:10.1063/1.1667593 Google Scholar
10. Bermann, O. L., Y. E. Lozovik, S. L. Eiderman, and R. D. Coalson, "Superconducting photonic crystals: Numerical calculations of the band structure," Phys. Rev. B, Vol. 74, 092505, 2006.
doi:10.1103/PhysRevB.74.092505 Google Scholar
11. Takeda, H. and K. Yoshino, "Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors," Phys. Rev. B , Vol. 67, 245109, 2005. Google Scholar
12. Lin, , W.-H., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Terahertz multichanneled filter in a superconducting photonic crystal," Opt. Express, Vol. 18, 27155, 2010.
doi:10.1364/OE.18.027155 Google Scholar
13. Halevi, P. and J. A. Reyes-Avendano, "Electrically tuned phase transition and band structure in a liquid-crystal-infilled photonic crystal," Phys. Rev. E, Vol. 73, 040701 (R), 2006. Google Scholar
14. Li, H. H., "Refractive index of silicon and germanium and its wavelength and temperature derivatives," J. Phys. Chem. Ref. Data, Vol. 9, 561, 1980.
doi:10.1063/1.555624 Google Scholar
15. Banerjee, A., "Enhanced temperature sensing by using one-dimensional ternary photonic band gap structures," Progress In Electromagnetics Research Letters, Vol. 11, 129-137, 2009.
doi:10.2528/PIERL09080101 Google Scholar
16. Chang, Y.-H., Y.-Y. Jhu, and C.-J. Wu, "Temperature dependence of defect mode in a defective photonic crystal," Opt. Commun., 2011, [Online early access], doi:10.1016/j.optcom.2011.10.053. Google Scholar
17. Born, M. and , E. Wolf, Principles of Optics, Cambridge, London, 1999.
18. Yeh, P., "Optical Waves in Layered Media," John Wiley and Sons, 1988. Google Scholar
19. Sakoda, K., Optical Properties of Photonic Crystals, Springer,Germany, 2001.
20. Ghosh, G., "Handbook of Thermo-optic Coefficients of Optical Materials with Applications," Academic Press, San Diego, CA,USA, 1997. Google Scholar