1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative value of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, Feb. 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structure," J. Phys. Condens. Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007 Google Scholar
3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Strewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
5. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2006.
6. Tao, H., A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, "Terahertz metamaterials on free-standing highly-flexible polyimide substrates," Appl. Phys., Vol. 41, Nov. 2008. Google Scholar
7. Tao , H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optic. Exp., Vol. 16, No. 10, 7181-7188, May 2008.
doi:10.1364/OE.16.007181 Google Scholar
8. Tao, H., C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekehamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle incidence terahertz metamaterial absorber: Design, fabrication and characterization," Phys. Rew. B, Vol. 78, 2008. Google Scholar
9. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rew. Lett., Vol. 100, May 2008. Google Scholar
10. Wen, Q. Y., H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication and characterization," Appl. Phys. Lett., Vol. 95, Dec. 2009. Google Scholar
11. Zhu, B., Z.-B. Wang, Z.-Z. Yu, Q. Zhang, J.-M. Zhao, Y.-J. Feng, and T. Jiang, "Planar metamaterial microwave absorber for all wave polarizations," Chin. Phys. Lett., Vol. 26, No. 11, 2009. Google Scholar
12. Tao, H., C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," Appl. Phys. Lett., Vol. 43, 2010. Google Scholar
13. Cheng, Y. and H. Yang, "Design, simulation, and measurement of metamaterial absorber," J. Appl. Phys., Vol. 108, Aug. 2010. Google Scholar
14. Schuring, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, Nov. 2006. Google Scholar
15. Watts, C., X. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Adv. Mat., Vol. 24, OP98, 2012.
doi:10.1002/adma.201200674 Google Scholar
16. Pozar, D. M., Microwave Engineering, 2nd Ed., John Wiley & Sons, 1999, ISBN 0471170968.
17. Padilla, W. J., M. T. Aronsson, C. Highstrete, and M. Lee, "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rew. Lett. B, Vol. 75, 2007. Google Scholar
18. Schuring, D., J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett., Vol. 88, 2006. Google Scholar