1. Pozar, D. M., Microwave Engineering, 2nd Ed., Wiley, New York, 1998.
2. Hong, , J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001.
doi:10.1002/0471221619
3. Moghadasi, S. M., A. R. Attari, and M. M. Mirsalehi, "Compact and wideband 1-D mushroom-like EBG filters," Progress In Electromagnetics Research, Vol. 83, 323-333, 2008.
doi:10.2528/PIER08050101 Google Scholar
4. Chang, C. C., Y. Qian, and T. Itoh, "Analysis and applications of uniplanar compact photonic bandgap structures," Progress In Electromagnetic Research, Vol. 41, 211-235, 2003. Google Scholar
5. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions Antennas and Propagation, Vol. 51, 2939-2949, 2003. Google Scholar
6. Sharma, R., T. Chakravarty, and S. Bhooshan, "Design of a novel 3 dB microstrip backward wave coupler using defected ground structure," Progress In Electromagnetic Research, Vol. 65, 261-273, 2006.
doi:10.2528/PIER06100502 Google Scholar
7. Xu, H.-J., Y.-H. Zhang, and Y. Fan, "Analysis of the connection between K connector and microstrip with electromagnetic bandgap (EBG) structures," Progress In Electromagnetics Research, Vol. 73, 239-247, 2007.
doi:10.2528/PIER07040801 Google Scholar
8. Gujral, M., J. L.-W. Li, T. Yuan, and C.-W. Qiu, "Bandwidth improvement of microstrip antenna array using dummy EBG pattern on feedline," Progress In Electromagnetics Research, Vol. 127, 79-92, 2012.
doi:10.2528/PIER12022807 Google Scholar
9. Xue, Q., K. M. Shum, and C. H. Chan, "Novel 1-D microstrip PBG cells," IEEE Microwave and Guided Wave Letters, Vol. 10, No. 10, 403-405, Oct. 2000. Google Scholar
10. Xue, Q., K. M. Shum, and C. H. Chan, "Low conversion-loss fourth subharmonic mixers incorporating CMRC for millimeter-wave applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 5, 1449-1454, May 2003.
doi:10.1109/TMTT.2003.810153 Google Scholar
11. Deng, K., Q. Xue, and W. Che, "Improved CMRC lowpass filter with wide stopband characteristics," Electronics Letters, Vol. 43, No. 8, Apr. 12, 2007. Google Scholar
12. Zhang, F., J. Z. Gu, C. Y. Gu, L. N. Shi, C. F. Li, X. W. Sun, "Lowpass filter with in-line beeline CMRC," Electronics Letters, Vol. 42, No. 8, Apr. 13, 2006. Google Scholar
13. Xue, Q., K. M. Shum, and C. H. Chan, "Novel oscillator incorporating a compact microstrip resonant cell," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 5, May 2001. Google Scholar
14. Yang, X., B. Zhang, Y. Fan, F. Q. Zhong, and Z. Chen, "Design of improved CMRC structure used in terahertz subharmonic pumped mixer," 2010 12th IEEE International Conference on Communication Technology (ICCT), 559-562, 2010.
doi:10.1109/ICCT.2010.5688912 Google Scholar
15. Yum, T. Y., Q. Xue, and C. H. Chan, "Novel subharmonically pumped mixer incorporating dual-band stub and in-line SCMRC," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 12, Dec. 2003. Google Scholar
16. Gu, J. and X. Sun, "Compact lowpass filter using spiral compact microstrip resonant cells," Electronics Letters, Vol. 41, No. 19, 1065-1066, Sep. 15, 2005.
doi:10.1049/el:20052569 Google Scholar
17. Quendo, C., E. Rius, and C. Person, "An original topology of dual-band filter with transmission zeros," 2003 IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 1093-1096, 2003.
doi:10.1109/MWSYM.2003.1212559 Google Scholar
18. Quendo, C., E. Rius, and C. Person, "Narrow bandpass filters using dual-behavior resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 734-743, Mar. 2003.
doi:10.1109/TMTT.2003.808729 Google Scholar
19. Chen, J., Z.-B.Weng, Y.-C. Jiao, and F.-S. Zhang, "Lowpass filter design of hilbert curve ring defected ground structure," Progress In Electromagnetics Research, Vol. 70, 269-280, 2007.
doi:10.2528/PIER07012603 Google Scholar
20. Yang, M. H., J. Xu, Q. Zhao, and X. Sun, "Wide-stopband and miniarurized lowpass filters using sirs-loaded hairpin resonators," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2385-2396, 2009.
doi:10.1163/156939309790416152 Google Scholar
21. Yang, M., J. Xu, Q. Zhao, L. Peng, and G. Li, "Compact, broad-stopband lowpass filters using sirs-loaded circular hairpin resonators ," Progress In Electromagnetics Research, Vol. 102, 95-106, 2010.
doi:10.2528/PIER09120901 Google Scholar
22. Cao, H., W. Guan, S. He, and L. Yang, "Compact lowpass filter with high selectivity using G-shaped defected microstrip structure," Progress In Electromagnetics Research Letters, Vol. 33, 55-62, 2012. Google Scholar
23. Lu, K., G.-M. Wang, Y.-W. Wang, and X. Yin, "An improved design of Hi-Lo microstrip lowpass filter using uniplanar double spiral resonant cells," Progress In Electromagnetics Research Letters, Vol. 23, 89-98, 2011. Google Scholar
24. Zhu, H.-R., W. Shen, and J.-F. Mao, "A miniaturized semi-lumped lowpass filter with multiple transmission zeros and wide stopband," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 89, 1148-1157, 2012.
doi:10.1080/09205071.2012.710559 Google Scholar
25. Xie, H.-H., Y.-C. Jiao, L.-N. Chen, and F.-S. Zhang, "An effective analysis method for ebg reducing patch antenna coupling," Progress In Electromagnetics Research Letters, Vol. 21, 187-193, 2011. Google Scholar
26. Khromova , I., I. Ederra, R. Gonzalo, and B. P. de Hon, "Symmetrical pyramidal horn antennas based on EBG structures," Progress In Electromagnetics Research B, Vol. 29, 1-22, 2011.
doi:10.2528/PIERB11020403 Google Scholar