Vol. 36
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-01-03
Compact Dual-Band 90° Couplers with Customizable Power Division Ratios Utilizing Scrlh Transmission Lines
By
Progress In Electromagnetics Research C, Vol. 36, 29-40, 2013
Abstract
Novel dual-band 90° couplers with arbitrary power division ratios using simplified composite right-/left-handed (SCRLH) transmission lines (TLs) are proposed. With a degree of freedom in the structural parameters, a SCRLH stub can easily be tailored to imitate a conventional 90° section at two arbitrary frequencies with different characteristic impedances, making the resulting couplers with customizable power division ratios, as well as ensuring the size miniaturization and element realizability. To validate our idea, 90° couplers operated at 2.45/5.2 GHz with various power division ratios are designed and fabricated using microstrip technology. Good agreement is achieved between the simulated and measured results, justifying that the SCRLH configuration provides a new way of implementing a compact dual-band 90° coupler with arbitrary power split ratios.
Citation
Jian-Qiang Gong, Chang-Hong Liang, and Bian Wu, "Compact Dual-Band 90° Couplers with Customizable Power Division Ratios Utilizing Scrlh Transmission Lines," Progress In Electromagnetics Research C, Vol. 36, 29-40, 2013.
doi:10.2528/PIERC12110707
References

1. Cheng, K.-K. M. and F.-L.Wong, "A novel approach to the design and implementation of dual-band compact planar 90o branch-line coupler," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 11, 2458-2463, Nov. 2004.
doi:10.1109/TMTT.2004.837151

2. Chin, K.-S., K.-M. Lin, Y.-H. Wei, T.-H. Tseng, and Y.-J. Yang, "Compact dual-band branch-line and rat-race couplers with stepped-impedance-stub lines," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 5, 1213-1221, May 2010.
doi:10.1109/TMTT.2010.2046064

3. Yeung, L. K., "A compact dual-band 90o coupler with coupled-line sections," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 9, 2227-2232, 2010.
doi:10.1109/TMTT.2011.2160199

4. Wan, X., W.-Y. Yin, and K.-L. Wu, "A dual-band coupled-line coupler with an arbitrary coupling coefficient," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 4, 945-951, Apr. 2012.
doi:10.1109/TMTT.2012.2185949

5. Kuo, J.-T. and C.-H. Tsai, "Generalized synthesis of rat race ring coupler and its application to circuit miniaturization," Progress In Electromagnetics Research, Vol. 108, 51-64, 2010.
doi:10.2528/PIER10071705

6. Nosrati, M. and M. Daneshmand, "Dual-wideband branch-line coupler based on a loaded N-segment SIR," Micro. Opt. Technol. Lett., Vol. 54, No. 10, Oct. 2012.

7. Kim, H., B. Lee, and M.-J. Park, "Dual-band branch-line coupler with port extensions," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 3, 651-655, Mar. 2010.
doi:10.1109/TMTT.2010.2040342

8. Lin, F. and Q.-X. Chu, "A novel tri-band branch-line coupler with three controllable operating frequencies," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 12, 666-668, Dec. 2010.
doi:10.1109/LMWC.2010.2074191

9. Wong, Y. S., S. Y. Zheng, and W. S. Chan, "Multifolded bandwidth branch line coupler with filtering characteristics using coupled port feeding," Progress In Electromagnetics Research, Vol. 118, 17-35, 2011.
doi:10.2528/PIER11041401

10. Lin, I.-H., M. DeVincentis, C. Caloz, and T. Itoh, "Arbitrary dual-band components using composite right/left-handed transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 4, 1142-1149, Apr. 2004.
doi:10.1109/TMTT.2004.825747

11. Bonache, J., G. Siso, M. Gil, A. Iniesta, J. Garcia-Rincon, and F. Martin, "Application of composite right-left handed (CRLH) transmission lines based on complementary split ring resonators (CSRRS) to the design of dual-band microwave components," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 8, 524-526, Aug. 2008.
doi:10.1109/LMWC.2008.2001011

12. Gong, J.-Q., C.-H. Liang, and B. Wu, "Novel dual-band hybrid coupler using improved simplified CRLH transmission line stubs," Micro. Opt. Technol. Lett., Vol. 52, No. 11, Nov. 2010.

13. Hsu, C.-L., J.-T. Kuo, and C.-W. Chang, "Miniaturized dual-band hybrid couplers with arbitrary power division ratios," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 1, 149-156, Jan. 2009.
doi:10.1109/TMTT.2008.2009036

14. Lin, F., Q.-X. Chu, and S. W. Wong, "Compact broadband microstrip rat-race couplers using microstrip/slotline phase inverters for arbitrary power dividing ratios," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 17-18, 2012.
doi:10.1080/09205071.2012.734437

15. Li, B. and W. Wu, "Compact dual-band branch-line coupler with 20 : 1 power dividing ratio," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 4, 607-615, Apr. 2011.
doi:10.1163/156939311794500322

16. Chi, P.-L., "Miniaturized ring coupler with arbitrary power divisions based on the composite right/left-handed transmission lines," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 4, 170-172, Apr. 2012.
doi:10.1109/LMWC.2012.2189376

17. Gong, J.-Q. and Q.-X. Chu, "SCRLH TL based UWB bandpass filter with widened upper stopband," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14-15, 1985-1992, 2008.
doi:10.1163/156939308787537982

18. Matthaei, G. L., L. Young, and E. M. T. Jones, "Microwave Filters, Impedance-Matching Network, and Coupling Structures," Artech House, 1980.

19. Pozar, D. M, Microwave Engineering, 3rd Ed., Publishing House of Electronics Industry, Beijing, 2006.