1. Hamalainen, M., R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa, "Magnetoencephalography --- Theory, instrumentation and applications to noninvasive studies of the working human brain," Rev. Mod. Phys, Vol. 65, 413-497, 1993.
doi:10.1103/RevModPhys.65.413 Google Scholar
2. Darvas, F. and D. Pantazis, "Mapping human brain function with MEG and EEG: Methods and validation," Neuroimage, Vol. 23, S289-S299, 2004.
doi:10.1016/j.neuroimage.2004.07.014 Google Scholar
3. Plonsey, R., Biomagnetic Phenomena, McGraw-Hill, 1969.
4. Zhang, Z., "A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres," Phys. Med. Biol., Vol. 40, 335-349, 1995.
doi:10.1088/0031-9155/40/3/001 Google Scholar
5. Bishop, G. H., "Potential phenomena in thalamus and cortex," Electroencephalography and Clinical Neurophysiology, Vol. 1, No. 1-4, 421-436, 1949. Google Scholar
6. Brazier, M. A. B., "A study of the electrical field at the surface of the head," Electroencephalography and Clinical Neurophysiology Supplement, Vol. 2, 38-52, 1949. Google Scholar
7. Sholl, D. A., "The Organization of the Cerebral Cortex," Wiley, 1956. Google Scholar
8. Landau, W. M. and E. Potentials, The Neurosciences --- A Study Program, G. C. Quarton, T. Melnechuk, and F. O. Schmitt, Rockefeller University Press, 1967.
9. De Munck, J. C., B. W. van Dijk, and H. Spekreijse, "Mathematical dipoles are adequate to describe realistic generators of human brain activity," IEEE Trans. Biomed. Eng., Vol. 35, 960-966, 1988.
doi:10.1109/10.8677 Google Scholar
10. Sarvas, J., "Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem," Phys. Med. Biol., Vol. 32, 11-22, 1987.
doi:10.1088/0031-9155/32/1/004 Google Scholar
11. Schimpf, P. H., C. Ramon, and J. Haueisen, "Dipole models for the EEG and MEG," IEEE Trans. Biomed. Eng., Vol. 49, 409-418, 2002.
doi:10.1109/10.995679 Google Scholar
12. Yao, D., "Electric potential produced by a dipole in a homogeneous conducting sphere," IEEE Trans. Biomed. Eng., Vol. 47, 964-966, 2000. Google Scholar
13. Gencer, N. G. and I. O. Tanzer, "Forward problem solution of electromagnetic source imaging using a new BEM formulation with high-order elements," Phys. Med. Biol., Vol. 44, 2275-2287, 1999.
doi:10.1088/0031-9155/44/9/314 Google Scholar
14. Tanzer, O., S. Jarvenpaa, J. Nenonen, and E. Somersalo, "Representation of bioelectric current sources using whitney elements in the finite element method," Phys. Med. Biol., Vol. 50, 3023-3039, 2005.
doi:10.1088/0031-9155/50/13/004 Google Scholar
15. Haueisen, J., C. Hafner, H. Nowak, and H. Brauer, "Neuromagnetic ¯eld computation using the multiple multipole method," Int. J. Numer. Model., Vol. 9, 145-158, 1996.
doi:10.1002/(SICI)1099-1204(199601)9:1/2<145::AID-JNM233>3.0.CO;2-U Google Scholar
16. Pohl-Alfaro, M., O. Yanez-SuArez, J. R. Jimenez-Alaniz, and V. Medina-Ba~nuelos, "Realistic meshless conductor model for EEG inverse problems," International Journal of Bioelectromagnetism, Vol. 10, 176-189, 2008. Google Scholar
17. Ala, G., E. Francomano, and F. Viola, "A wavelet operator on the interval in solving Maxwell's equations," Progress In Electromagnetic Research Letters,, Vol. 27, 133-140, 2011.
doi:10.2528/PIERL11090505 Google Scholar
18. Ala, G., M. L. Di Silvestre, F. Viola, and E. Francomano, "Soil ionization due to high pulse transient currents leaked by earth electrodes," Progress In Electromagnetics Research B, Vol. 14, 1-21, 2009.
doi:10.2528/PIERB09022103 Google Scholar
19. Liu, G. R., Mesh Free Methods --- Moving beyond the Finite Element Method, CRC Press, 2003.
20. Gingold, R. A. and J. J. Monaghan, "Smoothed particle hydrodynamics: Theory and application to non-spherical stars," Mon. Not. Roy. Astron. Soc., Vol. 181, 375-389, 1977. Google Scholar
21. Liu, M. B. and G. R. Liu, "Smoothed particle hydrodynamics (SPH): An overview and recent developments," Archives of Computational Methods in Engineering, Vol. 17, 25-76, 2010.
doi:10.1007/s11831-010-9040-7 Google Scholar
22. Monaghan , J. J., "An introduction to SPH," Comput. Phys. Commun., Vol. 48, 89-96, 1988.
doi:10.1016/0010-4655(88)90026-4 Google Scholar
23. Monaghan, J. J., "Smoothed particle hydrodynamics," Annu. Rev. Astron. Astrophys., Vol. 30, 543-574, 1992.
doi:10.1146/annurev.aa.30.090192.002551 Google Scholar
24. Von Ellenrieder, N., C. H. Muravchik, and A. Nehorai, "A meshless method for solving the EEG forward problem," IEEE Trans. Biomed. Eng.,, Vol. 52, 249-257, 2005.
doi:10.1109/TBME.2004.840499 Google Scholar
25. Demirel, O., B. Schrader, I. F. Sbalzarini, and , "A parallel particle method for solving the EEG source localization forward problem," Proc. 6th Intl. Symp. Health Informatics and Bioinformatics --- HIBIT, 2011. Google Scholar
26. Ala, G. and E. Francomano, "An improved smoothed particle electromagnetics method in 3D time domain simulations," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields,, Vol. 25, No. 4, 325-337, 2012.
doi:10.1002/jnm.834 Google Scholar
27. Ala, G. and E. Francomano, "Smoothed particle electromagnetics modelling on HPC-GRID environment," Applied Computational Electromagnetics Society Journal, Vol. 27, No. 3, 229-237, 2012. Google Scholar
28. Ala, G., G. Di Blasi, and E. Francomano, "A numerical meshless particle method in solving the magnetoencephalography forward problem," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 25, 428-440, 2012.
doi:10.1002/jnm.1828 Google Scholar
29. Ala, G. and E. Francomano, "A marching in time meshless kernel based solver for full-wave electromagnetic simulation," Numerical Algorithms, Springer, 2012, ISSN: 1017-1398, DOI 10.1007/s11075-012-9635-1 . Google Scholar
30. Ala, G., E. Francomano, A. Tortorici, E. Toscano, and F. Viola, "Corrective meshless particle formulations for time domain Maxwell's equations," Journal of Computational and Applied Mathematics, Vol. 210, No. 1, 34-46, 2007.
doi:10.1016/j.cam.2006.10.054 Google Scholar
31. Ala, G., E. Francomano, A. Spagnuolo, and A. Tortorici, "A Meshless approach for electromagnetic simulation of metallic carbon nanotubes," Journal of Mathematical Chemistry, Vol. 48, No. 1, 72-77, 2010.
doi:10.1007/s10910-009-9627-0 Google Scholar
32. Di Blasi, G., E. Francomano, A. Tortorici, and E. Toscano, "A smoothed particle image reconstruction method," Calcolo, Vol. 48, 61-74, 2011.
doi:10.1007/s10092-010-0028-3 Google Scholar
33. Ahonen, A. I., M. S. Hamalainen, M. J. Kajola, J. E. T. Knuutila, P. P. Laine, O. V. Lounasmaa, L. T. Parkkonen, J. T. Simola, and C. D. Tesche, "122-channel squid instrument for investigating the magnetic signals from the human brai," Physica Scripta, Vol. T49A, 198-205, 1993.
doi:10.1088/0031-8949/1993/T49A/033 Google Scholar
34. Zhang, Y. and L.Wu, "An MR brain images classifier via principal component analysis and kernel support vector machine," Progress In Electromagnetics Research, Vol. 130, 369-388, 2012. Google Scholar