Vol. 35
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-12-12
Human Body Effects on Inkjet-Printed Flexible RF Interconnections
By
Progress In Electromagnetics Research C, Vol. 35, 83-94, 2013
Abstract
The effect of human body on inkjet-printed flexible single-layer transmission lines in immediate proximity of body is investigated by simulations and measurements up to 9 GHz. A multliine extraction method is used to obtain effective material parameters allowing detailed analysis of body effects. Already at 1 mm distance from the body, the line properties converge toward the free-space values. However, at smaller distances and in direct contact with the body, often required in biosensor applications, there is a significant change in characteristic impedance and increase in losses. The results of the paper can be used to evaluate the body effects at different frequencies and at different small distances from the body.
Citation
Shahed Alam, Hannu P. Sillanpaa, and Riku M. Makinen, "Human Body Effects on Inkjet-Printed Flexible RF Interconnections," Progress In Electromagnetics Research C, Vol. 35, 83-94, 2013.
doi:10.2528/PIERC12111304
References

1. Kellomaki, T., "Effects of the human body on single-layer wearable antennas,", Ph.D. Thesis, Tampere University of Technology, Tampere, 2012.
doi:10.2528/PIERB10032705

2. Sankaralingam, S. and B. Gupta, "Development of textile antennas for body wearable applications and investigations on their performance under bent conditions," Progress In Electromagnetics Research B, Vol. 22, 53-71, 2010.

3. Hall, P. S. and Y. Hao, Antennas and Propagation for Body-centric Wireless Communications, Artech House, London, 2006.
doi:10.1109/JSEN.2010.2096208

4. Tseng, H.-W., S.-T. Sheu, and Y.-Y. Shih, "Rotational listening strategy for IEEE 802.15.4 wireless body networks," IEEE Sensors Journal, Vol. 11, No. 9, 1841-1855, 2011.
doi:10.2528/PIER05070101

5. Chedid, M., I. Belov, and P. Leisner, "Electromagnetic coupling to a wearable application based on coaxial cable architecture," Progress In Electromagnetics Research, Vol. 56, 109-128, 2006.

6. Osman, M. A. R., M. K. Abd Rahim, N. A. Samsuri, H. A. M. Salim, and M. F. Ali, "Embroided fully textile wearable antenna for medical monitoring applications," Progress In Electromagnetics Research, Vol. 117, 321-337, 2011.

7. Axisa, F., F. Bossuyt, T. Vervust, and J. Vanfleteren, "Laser based fast prototyping methodology of producing stretchable and conformable electronic systems," Proc. Electronics System-ntegration Technol. Conf.,, 1387-1390, London, Sep. 2008.

8. Loher, T., M. Seckel, and A. Ostmann, "Stretchable electronics manufacturing and application," Proc. Electronics System-integration Technol. Conf., 1-6, Berlin, Sep. 2010.
doi:10.2528/PIERL11120303

9. El-Nasr, M. A., H. A. Shaban, and R. M. Buehrer, "Key design parameters and sensor-fusion for low-power wearable UWB-based motion tracking and gait analysis systems," Progress In Electromagnetics Research Letters, Vol. 29, 115-126, 2012.
doi:10.2528/PIER06031201

10. Gupta, R. C. and S. P. Singh, "Development and analysis of a microwave direct contact water-loaded box-horn applicator for therapeutic heating of bio-medium," Progress In Electromagnetics Research, Vol. 62, 217-235, 2006.

11. Theilmann, P. T., M. A. Tassoudji, E. H. Teague, D. F. Kimball, and P. M. Asbeck, "Computationally efficient model for UWB signal attenuation due to propagation in tissue for biomedical implants," Progress In Electromagnetics Research B, Vol. 38, 1-22, 2012.

12. Mantysalo, M., V. Pekkanen, K. Kaija, J. Niittynen, S. Koskinen, E. Halonen, P. Mansikkamaki, and O. Hameenoja, "Capability of inkjet technology in electronics manufacturing," Proc. 59th Electronic Components and Technology Conf., 1330-1336, San Diego, CA, May 2009.
doi:10.1109/TEPM.2010.2051809

13. Pynttari, V., R. Makinen, V. Palukuru, K. Ostman, H. Sillanpaa, T. Kanerva, T. Lepisto, J. Hagberg, and H. Jantunen, "Application of wide-band material characterization methods to printable electronics," IEEE Trans. Electronics Packaging Manufacturing,, Vol. 33, No. 3, 221-227, 2010.

14. AWR Microwave Office, AWR Corporation, , Referred Oct. 1, 2012, http://www.awrcorp.com/.

15. Dielectric properties of body tissues, Referred Oct. 1, 2012, Available Online: http://niremf.ifac.cnr.it/tissprop/.
doi:10.1049/ip-map:20010675

16. Carchon, G. and B. Nauwelaers, "Accurate transmission line characterisation on high and low-resistivity substrates," IEE Proc. Microwaves, Antennas and Propagation, Vol. 148, No. 5, 285-290, 2001.
doi:10.1109/TED.2005.861726

17. Mangan, A. M., S. P. Voinigescu, M.-T. Yang, and M. Tazlauanu, "De-embedding transmission line measurements for accurate modeling of IC designs," IEEE Trans. Electron. Devices, Vol. 53, No. 2, 235-241, 2006.

18. Sillanpaa, H., J. Lilja, R. Makinen, K. Ostman, V. Palukuru, J. Virtanen, V. Pynttari, T. Kanerva, J. Hagberg, T. Lepisto, H. Jantunen, and P., "Application of wide-band material parameter extraction techniques to printable electronics characterization," Proc. 59th Electronic Components and Technology Conf., 1342-1348, San Diego, CA, May 2009.

19. Sillanpaa, H., A. Rasku, and R. Makinen, "A multiline material parameter extraction method," Proc. Mediterranean Microwave Symp., 314-317, Gyzelyurt, Cyprus, Aug. 2010.

20. Rasku, A., H. Sillanpaa, I. Hiltunen, and R. Makinen, "Multiline material parameter extraction method performance analysis," Proc. Asia-Pacific Microwave Conf., 1905-1908, Yokohama, Japan, Dec. 2010 .
doi:10.1109/APS.2012.6348498

21. Makinen, R., A. Rasku, and H. Sillanpaa, "Modeling-based printed electronics characterization," Proc. IEEE Antennas Propagat. Intl. Symp., 1-2, Chicago, IL, Jul. 2012.
doi:10.1109/22.85388

22. Marks, R. B., "A multiline method of network analyzer calibration," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 7, 1205-1215, 1991.
doi:10.1109/TSM.2005.863248

23. Enderling, S., C. L. Brown, III, S. Smith, M. H. Dicks, J. T. M. Stevenson, M. Mitkova, M. N. Kozicki, and A. J. Walton, "Sheet resistance measurement of non-standard cleanroom materials using suspended Greek cross test structures," IEEE T. Semicond. Manuf., Vol. 19, No. 1, 2-9, 2006.