1. Kellomaki, T., "Effects of the human body on single-layer wearable antennas,", Ph.D. Thesis, Tampere University of Technology, Tampere, 2012.
doi:10.2528/PIERB10032705 Google Scholar
2. Sankaralingam, S. and B. Gupta, "Development of textile antennas for body wearable applications and investigations on their performance under bent conditions," Progress In Electromagnetics Research B, Vol. 22, 53-71, 2010. Google Scholar
3. Hall, P. S. and Y. Hao, Antennas and Propagation for Body-centric Wireless Communications, Artech House, 2006.
doi:10.1109/JSEN.2010.2096208
4. Tseng, H.-W., S.-T. Sheu, and Y.-Y. Shih, "Rotational listening strategy for IEEE 802.15.4 wireless body networks," IEEE Sensors Journal, Vol. 11, No. 9, 1841-1855, 2011.
doi:10.2528/PIER05070101 Google Scholar
5. Chedid, M., I. Belov, and P. Leisner, "Electromagnetic coupling to a wearable application based on coaxial cable architecture," Progress In Electromagnetics Research, Vol. 56, 109-128, 2006. Google Scholar
6. Osman, M. A. R., M. K. Abd Rahim, N. A. Samsuri, H. A. M. Salim, and M. F. Ali, "Embroided fully textile wearable antenna for medical monitoring applications," Progress In Electromagnetics Research, Vol. 117, 321-337, 2011. Google Scholar
7. Axisa, F., F. Bossuyt, T. Vervust, and J. Vanfleteren, "Laser based fast prototyping methodology of producing stretchable and conformable electronic systems," Proc. Electronics System-ntegration Technol. Conf.,, 1387-1390, London, Sep. 2008. Google Scholar
8. Loher, T., M. Seckel, and A. Ostmann, "Stretchable electronics manufacturing and application," Proc. Electronics System-integration Technol. Conf., 1-6, Berlin, Sep. 2010.
doi:10.2528/PIERL11120303 Google Scholar
9. El-Nasr, M. A., H. A. Shaban, and R. M. Buehrer, "Key design parameters and sensor-fusion for low-power wearable UWB-based motion tracking and gait analysis systems," Progress In Electromagnetics Research Letters, Vol. 29, 115-126, 2012.
doi:10.2528/PIER06031201 Google Scholar
10. Gupta, R. C. and S. P. Singh, "Development and analysis of a microwave direct contact water-loaded box-horn applicator for therapeutic heating of bio-medium," Progress In Electromagnetics Research, Vol. 62, 217-235, 2006. Google Scholar
11. Theilmann, P. T., M. A. Tassoudji, E. H. Teague, D. F. Kimball, and P. M. Asbeck, "Computationally efficient model for UWB signal attenuation due to propagation in tissue for biomedical implants," Progress In Electromagnetics Research B, Vol. 38, 1-22, 2012. Google Scholar
12. Mantysalo, M., V. Pekkanen, K. Kaija, J. Niittynen, S. Koskinen, E. Halonen, P. Mansikkamaki, and O. Hameenoja, "Capability of inkjet technology in electronics manufacturing," Proc. 59th Electronic Components and Technology Conf., 1330-1336, San Diego, CA, May 2009.
doi:10.1109/TEPM.2010.2051809 Google Scholar
13. Pynttari, V., R. Makinen, V. Palukuru, K. Ostman, H. Sillanpaa, T. Kanerva, T. Lepisto, J. Hagberg, and H. Jantunen, "Application of wide-band material characterization methods to printable electronics," IEEE Trans. Electronics Packaging Manufacturing,, Vol. 33, No. 3, 221-227, 2010. Google Scholar
14. AWR Microwave Office, AWR Corporation, , Referred Oct. 1, 2012, http://www.awrcorp.com/. Google Scholar
15. Dielectric properties of body tissues, Referred Oct. 1, 2012, Available Online: http://niremf.ifac.cnr.it/tissprop/.
doi:10.1049/ip-map:20010675 Google Scholar
16. Carchon, G. and B. Nauwelaers, "Accurate transmission line characterisation on high and low-resistivity substrates," IEE Proc. Microwaves, Antennas and Propagation, Vol. 148, No. 5, 285-290, 2001.
doi:10.1109/TED.2005.861726 Google Scholar
17. Mangan, A. M., S. P. Voinigescu, M.-T. Yang, and M. Tazlauanu, "De-embedding transmission line measurements for accurate modeling of IC designs," IEEE Trans. Electron. Devices, Vol. 53, No. 2, 235-241, 2006. Google Scholar
18. Sillanpaa, H., J. Lilja, R. Makinen, K. Ostman, V. Palukuru, J. Virtanen, V. Pynttari, T. Kanerva, J. Hagberg, T. Lepisto, H. Jantunen, and P., "Application of wide-band material parameter extraction techniques to printable electronics characterization," Proc. 59th Electronic Components and Technology Conf., 1342-1348, San Diego, CA, May 2009. Google Scholar
19. Sillanpaa, H., A. Rasku, and R. Makinen, "A multiline material parameter extraction method," Proc. Mediterranean Microwave Symp., 314-317, Gyzelyurt, Cyprus, Aug. 2010. Google Scholar
20. Rasku, A., H. Sillanpaa, I. Hiltunen, and R. Makinen, "Multiline material parameter extraction method performance analysis," Proc. Asia-Pacific Microwave Conf., 1905-1908, Yokohama, Japan, Dec. 2010 .
doi:10.1109/APS.2012.6348498 Google Scholar
21. Makinen, R., A. Rasku, and H. Sillanpaa, "Modeling-based printed electronics characterization," Proc. IEEE Antennas Propagat. Intl. Symp., 1-2, Chicago, IL, Jul. 2012.
doi:10.1109/22.85388 Google Scholar
22. Marks, R. B., "A multiline method of network analyzer calibration," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 7, 1205-1215, 1991.
doi:10.1109/TSM.2005.863248 Google Scholar
23. Enderling, S., C. L. Brown, III, S. Smith, M. H. Dicks, J. T. M. Stevenson, M. Mitkova, M. N. Kozicki, and A. J. Walton, "Sheet resistance measurement of non-standard cleanroom materials using suspended Greek cross test structures," IEEE T. Semicond. Manuf., Vol. 19, No. 1, 2-9, 2006. Google Scholar