Vol. 37
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-01-09
Printed UWB End-Fire Vivaldi Antenna with Low RCS
By
Progress In Electromagnetics Research Letters, Vol. 37, 11-20, 2013
Abstract
A novel Vivaldi antenna with low radar cross section (RCS) for ultra-wide band (UWB) applications is proposed in this paper. As a printed antenna with electrically large length, the Vivaldi antenna has large backscattering when the incident waves are in the grazing directions. By sleeking the edges of the proposed antenna, the reflected currents are reduced so that the peaks of the backscattering can be inhibited. Its radiation characteristics are simulated and verified. The RCS performance of the proposed antenna is studied and compared with that of a commonly used Vivaldi antenna. The result shows that the proposed antenna has lower RCS than the reference antenna in both the perpendicular and grazing directions while maintaining similar radiation characteristics. So the results illuminate that the proposed Vivaldi antenna is a good candidate in the design of printed UWB end-fire antennas requiring low RCS.
Citation
Yongtao Jia, Ying Liu, Shu-Xi Gong, Tao Hong, and Dan Yu, "Printed UWB End-Fire Vivaldi Antenna with Low RCS," Progress In Electromagnetics Research Letters, Vol. 37, 11-20, 2013.
doi:10.2528/PIERL12112011
References

1. Knott, E. F., et al. Radar Cross Section,, 2nd Ed., SciTech, Raleigh, NC, 2004.

2. Hu, S., C. Law, W. Dou, and H. Chen, "Detection range enhancement of UWB RFID systems," 2007 IEEE International Workshop on Anti-counterfeiting, Security, Identification, ASID, 431-434, 2007.
doi:10.1109/IWASID.2007.373672

3. Pozar, D., Radiation and scattering from a microstrip patch on a uniaxial substrate, Vol. 35, No. 6, 613-621, IEEE Trans. on Antennas and Propag., 1987.

4. Yao, G.-W., Z.-H. Xue, W.-M. Li, W. Ren, and J. Cao, "Research on a new kind of high directivity end-fire antenna array," Progress In Electromagnetics Research B, Vol. 33, 135-151, 2011.
doi:10.2528/PIERB11032809

5. Eldek, A., "A 100% bandwidth microstrip antenna with stable end-fire radiation patterns for phased array applications," Proc. EEE Int. Symp. Antennas Propag. & URSI Nat. Radio Sci. Meeting, 3751-3754, Albuquerque, NM, 2006.

6. Zhu, X., W. Shao, J.-L. Li, and Y.-L. Dong, "Design and optimization of low RCS patch antennas based on a genetic algorithm," Progress In Electromagnetics Research, Vol. 122, 327-339, 2012.
doi:10.2528/PIER11100703

7. Liu, Y. and S. Gong, "A novel UWB clover-disc monopole antenna with RCS reduction," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1115-1121, 2008.
doi:10.1163/156939308784158959

8. Jiang, W., T. Hong, Y. Liu, S.-X. Gong, Y. Guan, and S. Cui, "A novel technique for RCS reduction of printed antennas," Journal of Electromagnetic Waves and Applications,, Vol. 24, No. 1, 51-60, 2010.
doi:10.1163/156939310790322145

9. Xu, H.-Y., H. Zhang, K. Lu, and X.-F. Zeng, "A holly-leaf-shaped monopole antenna with low RCS for UWB application," Progress In Electromagnetics Research, Vol. 117, 35-50, 2011.

10. Chen, F.-C. and W.-C. Chew, "Time-domain ultra-wideband microwave imaging radar system," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 313-331, 2012.
doi:10.1163/156939303322235842

11. Zhou, B., H. Li, X. Zhou, and T.-J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.

12. Chen, F., "An improved wideband Vivaldi antenna design,", The University of Texas-Pan American, 2010.