Vol. 37
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-02-18
Sensitivity Modulation of Surface Plasmon Resonance Sensor Configurations in Optical Fiber Waveguide
By
Progress In Electromagnetics Research Letters, Vol. 37, 167-176, 2013
Abstract
The reflectivity of three layer and four layer optical fiber based surface plasmon resonance sensors having silica material substrate and chalcogenide material substrate is plotted and studied. Using the transfer matrix method, the reflection coefficient for p-polarized incident lights at various wavelengths is obtained. It is observed that the sensitivity, detection accuracy and quality parameters of the sensor having silica substrates are much larger than the chalcogenide substrates. These parameters can also be increased by introducing an additional thin layer of silica/chalcogenide material on the metallic surface. Also, these sensor parameters are highly affected by the thickness of the additional thin layer.
Citation
Sushil Kumar, Gaurav Sharma, and Vivek Singh, "Sensitivity Modulation of Surface Plasmon Resonance Sensor Configurations in Optical Fiber Waveguide," Progress In Electromagnetics Research Letters, Vol. 37, 167-176, 2013.
doi:10.2528/PIERL12122801
References

1. Liedberg, B., C. Nylander, and I. Lunstrom, "Surface plasmon resonance for gas detection and biosensing," Sensors and Actuators, Vol. 4, 299-304, 1983.
doi:10.1016/0250-6874(83)85036-7

2. Otto, A., "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift fur Physik, Vol. 216, 398-410, 1968.
doi:10.1007/BF01391532

3. Kretschmann, E. and H. Reather, "Radiative decay of non-radiative surface plasmons excited by light," Zeitschrift fur Naturforschung, Vol. 23, 2135-2136, 1968.

4. Gent-Van, J., P. V. Lambeck, H. J. M. Kreuwel, et al. "Optimization of a chemooptical surface plasmon resonance based sensor," Applied Optics, Vol. 29, 2843-2849, 1990.
doi:10.1364/AO.29.002843

5. Stenberg, E., B. Persson, H. Roos, and C. Urbaniczky, "Quantitative determination of surface concentration of protein with surface plasmon resonance using radio labelled proteins," Journal of Colloid and Interface Science, Vol. 143, No. 2, 513-526, 1991.
doi:10.1016/0021-9797(91)90284-F

6. Chiang, H. P., C. W. Chen, J. J.Wu, et al. "Effects of temperature on the surface plasmon resonance at a metal semiconductor interface," Thin Solid Films, Vol. 515, No. 17, 6953-6961, 2007.
doi:10.1016/j.tsf.2007.02.034

7. Le Person, J., F. Colas, C. Compere, et al. "Surface plasmon resonance in chalcogenide glass-based optical system," Sensors and Actuators B, Vol. 130, No. 2, 771-776, 2008.
doi:10.1016/j.snb.2007.10.067

8. Jorgenson, R. C., S. S. Yee, and , "A fiber-optic chemical sensor based on surface plasmon resonance," Sensors and Actuators B, Vol. 12, No. 3, 213-220, 1993.
doi:10.1016/0925-4005(93)80021-3

9. Lin, W. B., N. Jaffrezic-Renault, A. Gagnaire, and H. Gagnaire, "The effects of polarization of the incident light-modelling and analysis of a SPR multimode optical fiber sensor," Sensors and Actuators A, Vol. 84, No. 3, 198-204, 2000.
doi:10.1016/S0924-4247(00)00345-9

10. Gentleman, D. J., L. A. Obando, J.-F. Masson, J. R. Holloway, and K. S. Booksh, "Calibration of fiber optic based surface plasmon resonance sensors in aqueous systems," Analytica Chimica Acta, Vol. 515, No. 2, 291-302, 2004.
doi:10.1016/j.aca.2004.03.061

11. Kim, Y. C., W. Peng, S. Banerji, and K. S. Booksh, "Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases," Optics Letters, Vol. 30, No. 17, 2218-2220, 2005.
doi:10.1364/OL.30.002218

12. Gupta, B. D. and A. K. Sharma, "Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: A theoretical study," Sensors and Actuators B, Vol. 107, No. 1, 40-46, 2005.
doi:10.1016/j.snb.2004.08.030

13. Patskovsky, S., A. V. Kabashin, and M. Meunier, "Properties and sensing characteristics of surface plasmon resonance in infrared light," J. Opt. Soc. Am. A, Vol. 20, No. 8, 1644-1650, 2003.
doi:10.1364/JOSAA.20.001644

14. Bureau, B., X. H. Zhang, F. Smektala, J. L. Adam, J. Troles, H.-L. Ma, C. Boussard-Pl'edel, J. Lucas, P. Lucas, D. Le Coq, M. R. Riley, and J. H. Simmons, "Recent advances in chalcogenide glasses," J. Non-Cryst. Solids, Vol. 345-346, 276-283, 2004.
doi:10.1016/j.jnoncrysol.2004.08.096

15. Le Person, J., F. Colas, C. Compere, M. Lehaitre, M.-L. Anne, C. Boussard-Pledel, B. Bureau, J. L. Adam, S. Deputier, and M. Guilloux-Viry, "Surface plasmon resonance in chalcogenide glass-based optical system," Sensors and Actuators B, Vol. 130, 771-776, 2008.
doi:10.1016/j.snb.2007.10.067

16. Nicolas, H. O., M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, J. R. Brian, L. M. Tanya, and C. A. Norman Jr., "Single mode low-loss chalcogenide glassware guide for mid-infrared," Optics Letters, Vol. 31, 1860-1862, 2006.

17. Kanso, M., S. Cuenot, and G. Louarn, "Sensitivity of optical fiber sensor based on Surface Plasmon resonance: Modeling and experiments," Plasmonics, Vol. 3, 49-57, 2008.
doi:10.1007/s11468-008-9055-1