Vol. 38
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-03-13
A Compact Coplanar Waveguide (CPW)-Fed Dual-Frequency Antenna with Single-Cell Metamaterial Loading
By
Progress In Electromagnetics Research C, Vol. 38, 55-65, 2013
Abstract
A compact waveguide(CPW)-fed dual-frequency planar monopole antenna is proposed, which can excite two modes.The antenna is composed of a epsilon negative (ENG) meta-structured transmission line (MTL) unit cell and a monopole. The first resonance is zeroth-order mode,which is described using dispersion relation of ENG MTL based on Bloch and Floquet and designed on a CPW single layer where vias are not required. And the second is electromagnetically coupled monopolar mode. The zeroth-order resonant phenomenon is employed to reduce the antenna size. To design and analyze the proposed antenna, the circuit simulation of the ENG MTL unit resonator is executed by the equivalent circuit, and the results are compared with those of full wave simulation and experiment. The results show that the presented antenna reasonable radiation characteristics of bandwidth gain and size, verified by a commercial EM simulation software HFSS11, and is suitable for compact dual-frequency antenna. Then the antenna is fabricated and measured. The realized antenna has a compact size of 0.288λ0 x 0.199λ0 x 0.011λ0(25.1mm x 17.4 mm x 1 mm) at 2.43 GHz. Simulated and experimentally measured results show that the proposed antenna can operate at 2.41(2.43) GHz and 4.11(4.14) GHz bands, respectively. Good agreement between the simulated and measured results is obtained.
Citation
Long Zheng, Guangming Wang, Lin Geng, and Yajun Hu, "A Compact Coplanar Waveguide (CPW)-Fed Dual-Frequency Antenna with Single-Cell Metamaterial Loading," Progress In Electromagnetics Research C, Vol. 38, 55-65, 2013.
doi:10.2528/PIERC13011811
References

1. Lee, C. S., V. Nalbandian, and F. Schwering, "Planar dual-band microstrip antenna," IEEE Trans. on Antennas and Propag., Vol. 43, No. 8, 892-894, Aug. 1995.
doi:10.1109/8.402213

2. Maci, S. and G. B. Gentili, "Dual frequency patch antennas," IEEE Antennas and Propag. Mag., Vol. 39, No. 6, Dec. 1997.

3. Anguera, J., C. Puente, C. Borja, N. Delbene, and J. Soler, "Dual frequency broadband stacked microstrip patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 36-39, 2003.
doi:10.1109/LAWP.2003.811325

4. Ma, S.-L. and J.-S. Row, "Design of Single-feed dual-frequency patch antenna for GPS and WLAN applications," IEEE Trans. on Antennas and Propag., Vol. 59, No. 9, 3433-3436, Sep. 2011.
doi:10.1109/TAP.2011.2161453

5. KantiMandal, M. and Z. N. Chen, "Compact dual-band and ultrawide-band loop antennas," IEEE Trans. on Antennas and Propag., Vol. 59, No. 8, 2774-2779, Aug. 2011.
doi:10.1109/TAP.2011.2158790

6. Quevedo-Teruel, O., E. Pucci, and E. Rajo-Iglesias, "Compact loaded PIFA for multifrequency applications," IEEE Trans. on Antennas and Propag., Vol. 58, No. 3, 656-664, Mar. 2010.
doi:10.1109/TAP.2009.2039305

7. Zhou, J. H., Y. Luo, B. Q. You, and B. Lin, "Three to two curve fractal folded dipole antenna for RFID application," Microwave and Optical Technology Letters, Vol. 52, No. 8, 1827-1830, Aug. 2010.
doi:10.1002/mop.25324

8. Anguera, J., E. Martinez, C. Puente, C. Borja, and J. Soler, "Broad band dual-frequency microstrip patch antenna with modified Sierpinski fractal geometry," IEEE Trans. on Antennas and Propag., Vol. 52, No. 1, 66-73, Jan. 2004.
doi:10.1109/TAP.2003.822433

9. Song, C. T. P., P. S. Hall, and H. Ghafouri-Shira, "Multiband quasi-fractal multiple ring monopole antenna," IEEE Trans. on Antennas and Propag., Vol. 51, No. 4, 722-729, 2003.
doi:10.1109/TAP.2003.811097

10. Anguera, J., C. Puente, C. Borja, and J. Soler, "Dual frequency broadband stacked microstrip antenna using a reactive loading and a fractal-shaped radiating EDGE," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 309-312, 2007.
doi:10.1109/LAWP.2007.891523

11. Anguera, J., E. Martinez, C. Puente, C. Borja, and J. Soler, "Broad-band triple-frequency microstrip patch radiator combining a dual-band modified Sierpinski fractal and a monoband antenna," IEEE Trans. on Antennas and Propag., Vol. 54, No. 11, 3367-3373, Nov. 2006.
doi:10.1109/TAP.2006.884209

12. Quevedo-Teruel, O., M. N. M. Kehn, and E. Rajo-Iglesias, "Dual-band patch antennas based on short-circuited split ring resonators," IEEE Trans. on Antennas and Propag., Vol. 59, No. 58, 2758-2765, Aug. 2011.
doi:10.1109/TAP.2011.2158786

13. Latif, S. I. and L. Shafai, "Investigation on the EM-coupled stacked square ring antennas with ultra-thin spacing," IEEE Trans. on Antennas and Propag., Vol. 59, No. 11, 3978-3990, Nov. 2011.
doi:10.1109/TAP.2011.2164203

14. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley, New York, Dec. 2006.

15. Otto, S., A. Rennings, C. Caloz, P. Waldow, and T. Itoh, "Composite right/left-handed λ-resonator ring antenna for dual-frequency operation," IEEE Antennas and Propagation Society International Symposium, 684-687, 2005.

16. Lai, A., S. Member, Kevin M. K. H. Leong, and T. Itoh, "Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures," IEEE Trans. on Antennas and Propag., Vol. 55, No. 3, 868-876, Mar. 2007.
doi:10.1109/TAP.2007.891845

17. Park, J.-H., Y.-H. Ryu, J.-G. Lee, and J.-H. Lee, "Epsilon negative zeroth-order resonator antenna," IEEE Trans. on Antennas and Propag., Vol. 55, No. 2, 3710-3712, Dec. 2007.
doi:10.1109/TAP.2007.910505

18. Ryu, Y.-H., J.-H. Park, J.-H. Lee, and H.-S. Tae, "Multiband antenna using +1, -1, and 0 resonant mode of dgs dual composite right/left handed transmission line," Microwave and Optical Technology Letters, Vol. 51, No. 10, 2485-2488, Oct. 2009.
doi:10.1002/mop.24649

19. Jang, T., S. Member, A. Choi, and S. Lim, "Compact coplanar waveguide (CPW)-fed zeroth-order resonant antennas with extended bandwidth and high efficiency on vialess single layer," IEEE Trans. on Antennas and Propag., Vol. 59, No. 2, 363-372, Feb. 2011.
doi:10.1109/TAP.2010.2096191

20. Lai, C.-P., S.-C. Chiu, H.-J. Li, and S.-Y. Chen, "Zeroth-order resonator antennas using inductor-loaded and capacitor-loaded CPWs," IEEE Trans. on Antennas and Propag., Vol. 59, No. 9, 3448-3453, Sep. 2011.
doi:10.1109/TAP.2011.2161561

21. Ghosh, B., S. K. Moinul Haque, and D. Mitra, "Miniaturization of slot antennas using slit and strip loading," IEEE Trans. on Antennas and Propag., Vol. 59, No. 10, 3922-3927, Oct. 2011.
doi:10.1109/TAP.2011.2163754