Vol. 30
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-04-17
Theoretical and Experimental Studies of Magnetic Field on Electromagnetic Wave Propagation in Plasma
By
Progress In Electromagnetics Research M, Vol. 30, 129-139, 2013
Abstract
A spacecraft will experience the well-known ``blackout'' problem in the re-entry into the Earth's atmosphere, which results in communication failures between the spacecraft and ground control center. It is important to study the blackout mitigation method. The effects of external magnetic field on electromagnetic wave propagation in plasma are studied by theoretical and experimental methods in this paper. The numerical results show that the attenuation of electromagnetic wave in plasma is reduced by the presence of a magnetized field. The propagation properties of electromagnetic wave in unmagnetized and magnetized plasma have been studied experimentally with plasma torch, and the experimental results are in good agreement with the theory. Both the theoretical and experimental results indicate that magnetic window is an alternative and promising way to improve the radio blackout issue.
Citation
Xiaojun Xing, Qing Zhao, and Ling Zheng, "Theoretical and Experimental Studies of Magnetic Field on Electromagnetic Wave Propagation in Plasma," Progress In Electromagnetics Research M, Vol. 30, 129-139, 2013.
doi:10.2528/PIERM13030607
References

1. Kim, M., M. Keidar, and I. D. Boyd, "Analysis of an electromagnetic mitigation scheme for reentry telemetry through plasma," Journal of Spacecraft and Rockets, Vol. 45, 1223-1229, 2008.
doi:10.2514/1.37395

2. Thoma, C., D. V. Rose, C. L. Miller, R. E. Clark, and T. P. Hughes, "Electromagnetic wave propagation through an overdense magnetized collisional plasma layer," Journal of Applied Physics, Vol. 106, 043301, 2009.
doi:10.1063/1.3195085

3. Ma, C. G., Q. Zhao, X. G. Luo, G. He, L. Zheng, and J. W. Liu, "Study on attenuation characteristics of millimeter wave in plasma," Acta Physica Sinica, Vol. 60, 055201, 2010.

4. Liu, J. F., X. L. Xi, G. B. Wan, and L. L. Wang, "Simulation of electromagnetic wave propagation through plasma sheath using electromagnetic wave propagation through plasma sheath using," IEEE Transactions on Plasma Science, Vol. 39, 852-855, 2011.
doi:10.1109/TPS.2010.2098890

5. Laroussi, M. and J. R. Roth, "Numerical calculation of the refection, absorption, and transmission of microwaves by a nonuniform plasma slab," IEEE Transactions on Plasma Science, Vol. 21, 366-372, 1993.
doi:10.1109/27.234562

6. Gurel, C. S. and E. Oncu, "Interaction of electromagnetic wave and plasma slab with partially linear and sinu-soidal electron density profile," Progress In Electromagnetics Research Letters, Vol. 12, 171-181, 2009.
doi:10.2528/PIERL09061707

7. Soliman, E. A., A. Helaly, and A. A. Megahed, "Propagation of electromagnetic waves in planar bounded plasma region," Progress In Electromagnetics Research, Vol. 67, 25-37, 2007.
doi:10.2528/PIER06071102

8. Guo, B. and X. Wang, "Power absorption of high frequency electromagnetic waves in a partially ionized plasma layer in atmosphere conditions," Plasma Science and Technology, Vol. 7, 2645-2648, 2005.
doi:10.1088/1009-0630/7/1/010

9. Ai, X., Y. Han, C. Y. Li, and X. W. Shi, "Analysis of dispersion relation of piecewise linear recursive convolution FDTD method for space-varying plasma," Progress In Electromagnetics Research Letters, Vol. 22, 83-93, 2011.

10. Yin, X., H. Zhang, H. Y. Xu, and X. F. Zeng, "Improved shift-operator FDTD method for anisotropic magnetized cold plasmas with arbitrary magnetic field declination," Progress In Electromagnetics Research B, Vol. 38, 39-56, 2012.

11. Wang, W. and Y. Z. Guan, "Exploration of the blackout," 863 Aerosp. Technol. Commun., Vol. 6, 32-37, 1999.

12. Hodara, H., "The use of magnetic fields in the elimination of the re-entry radio blackout," Proceedings of the IRE, Vol. 49, 1825, 1961.
doi:10.1109/JRPROC.1961.287709

13. Starkey, R. P., "Electromagnetic wave/magnetoactive plasma sheath interaction for hypersonic vehicle telemetry blackout analysis," 34th AIAA Plasmadynamics and Lasers Conference, Orlando, USA, June 23-26, 2003.

14. Keidar, M., "Electromagnetic reduction of plasma density during atmospheric reentry and hypersonic flights," Journal of Spacecraft and Rockets, Vol. 45, 445-453, 2008.
doi:10.2514/1.32147

15. Kim, M., L. D. Boyd, and M. Keudar, "Modeling of electromagnetic manipulation of plasma for communication during reentry flight," Journal of Spacecraft and Rockets, Vol. 47, No. 1, 29-35, 2010.
doi:10.2514/1.45525

16. Angus, J. R., S. I. Krasheninnikov, and A. I. Smolyakov, "Kinetic theory of electromagnetic plane wave obliquely incident on bounded plasma slab," Physics of Plasma, Vol. 17, 102115, 2010.
doi:10.1063/1.3499664

17. Cheng, G. X. and L. Liu, "Direct finite-difference analysis of the electromagnetic-wave propagation in inhomogeneous plasma," IEEE Transactions on Plasma Science, Vol. 38, 3109-3115, 2010.
doi:10.1109/TPS.2010.2071886

18. Dong, L. F., W. Y. Liu, Y. J. Yang, S. Wang, and Y. F. Ji, "Spectral diagnostics of electron density of plasma torch at atmospheric pressure," Acta Physica Sinica, Vol. 60, 045202, 2011.