1. Kim, M., M. Keidar, and I. D. Boyd, "Analysis of an electromagnetic mitigation scheme for reentry telemetry through plasma," Journal of Spacecraft and Rockets, Vol. 45, 1223-1229, 2008.
doi:10.2514/1.37395 Google Scholar
2. Thoma, C., D. V. Rose, C. L. Miller, R. E. Clark, and T. P. Hughes, "Electromagnetic wave propagation through an overdense magnetized collisional plasma layer," Journal of Applied Physics, Vol. 106, 043301, 2009.
doi:10.1063/1.3195085 Google Scholar
3. Ma, C. G., Q. Zhao, X. G. Luo, G. He, L. Zheng, and J. W. Liu, "Study on attenuation characteristics of millimeter wave in plasma," Acta Physica Sinica, Vol. 60, 055201, 2010. Google Scholar
4. Liu, J. F., X. L. Xi, G. B. Wan, and L. L. Wang, "Simulation of electromagnetic wave propagation through plasma sheath using electromagnetic wave propagation through plasma sheath using," IEEE Transactions on Plasma Science, Vol. 39, 852-855, 2011.
doi:10.1109/TPS.2010.2098890 Google Scholar
5. Laroussi, M. and J. R. Roth, "Numerical calculation of the refection, absorption, and transmission of microwaves by a nonuniform plasma slab," IEEE Transactions on Plasma Science, Vol. 21, 366-372, 1993.
doi:10.1109/27.234562 Google Scholar
6. Gurel, C. S. and E. Oncu, "Interaction of electromagnetic wave and plasma slab with partially linear and sinu-soidal electron density profile," Progress In Electromagnetics Research Letters, Vol. 12, 171-181, 2009.
doi:10.2528/PIERL09061707 Google Scholar
7. Soliman, E. A., A. Helaly, and A. A. Megahed, "Propagation of electromagnetic waves in planar bounded plasma region," Progress In Electromagnetics Research, Vol. 67, 25-37, 2007.
doi:10.2528/PIER06071102 Google Scholar
8. Guo, B. and X. Wang, "Power absorption of high frequency electromagnetic waves in a partially ionized plasma layer in atmosphere conditions," Plasma Science and Technology, Vol. 7, 2645-2648, 2005.
doi:10.1088/1009-0630/7/1/010 Google Scholar
9. Ai, X., Y. Han, C. Y. Li, and X. W. Shi, "Analysis of dispersion relation of piecewise linear recursive convolution FDTD method for space-varying plasma," Progress In Electromagnetics Research Letters, Vol. 22, 83-93, 2011. Google Scholar
10. Yin, X., H. Zhang, H. Y. Xu, and X. F. Zeng, "Improved shift-operator FDTD method for anisotropic magnetized cold plasmas with arbitrary magnetic field declination," Progress In Electromagnetics Research B, Vol. 38, 39-56, 2012. Google Scholar
11. Wang, W. and Y. Z. Guan, "Exploration of the blackout," 863 Aerosp. Technol. Commun., Vol. 6, 32-37, 1999. Google Scholar
12. Hodara, H., "The use of magnetic fields in the elimination of the re-entry radio blackout," Proceedings of the IRE, Vol. 49, 1825, 1961.
doi:10.1109/JRPROC.1961.287709 Google Scholar
13. Starkey, R. P., "Electromagnetic wave/magnetoactive plasma sheath interaction for hypersonic vehicle telemetry blackout analysis," 34th AIAA Plasmadynamics and Lasers Conference, Orlando, USA, June 23-26, 2003. Google Scholar
14. Keidar, M., "Electromagnetic reduction of plasma density during atmospheric reentry and hypersonic flights," Journal of Spacecraft and Rockets, Vol. 45, 445-453, 2008.
doi:10.2514/1.32147 Google Scholar
15. Kim, M., L. D. Boyd, and M. Keudar, "Modeling of electromagnetic manipulation of plasma for communication during reentry flight," Journal of Spacecraft and Rockets, Vol. 47, No. 1, 29-35, 2010.
doi:10.2514/1.45525 Google Scholar
16. Angus, J. R., S. I. Krasheninnikov, and A. I. Smolyakov, "Kinetic theory of electromagnetic plane wave obliquely incident on bounded plasma slab," Physics of Plasma, Vol. 17, 102115, 2010.
doi:10.1063/1.3499664 Google Scholar
17. Cheng, G. X. and L. Liu, "Direct finite-difference analysis of the electromagnetic-wave propagation in inhomogeneous plasma," IEEE Transactions on Plasma Science, Vol. 38, 3109-3115, 2010.
doi:10.1109/TPS.2010.2071886 Google Scholar
18. Dong, L. F., W. Y. Liu, Y. J. Yang, S. Wang, and Y. F. Ji, "Spectral diagnostics of electron density of plasma torch at atmospheric pressure," Acta Physica Sinica, Vol. 60, 045202, 2011. Google Scholar