Vol. 33
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-09-18
Wideband Radar Echo Simulation of Midcourse Precesional Target with Non-Ideal Scattering Centers
By
Progress In Electromagnetics Research M, Vol. 33, 45-55, 2013
Abstract
Radar echo of ballistic midcourse target contains unique motion information of the target, which can provide important evidence for target recognition. A wideband radar echo simulation model for midcourse precesional target is developed, where the micro-motion model, electromagnetic scattering calculation and linear frequency modulated (LFM) radar signal model are integrated. Firstly, the position variation of each scattering center of the moving target is analyzed. Then, the high frequency method is used to judge the masking effect of scattering centers of the rotational symmetry target. Finally, the wideband radar echo is simulated, and the impacts of high speed translational motion, non-precession movement and non-idealization of the scattering centers on the echo are also analyzed.
Citation
Jiajia Sun, Chuang-Ming Tong, and Xi-Min Li, "Wideband Radar Echo Simulation of Midcourse Precesional Target with Non-Ideal Scattering Centers," Progress In Electromagnetics Research M, Vol. 33, 45-55, 2013.
doi:10.2528/PIERM13080306
References

1. Ma, L., J. Liu, et al. "Micro-doppler characteristics of sliding-type scattering center on rotationally symmetric target," Science of China, Vol. 41, No. 5, 605-616, 2011.

2. Sessler, A. M., J. M. Cornwall, and B. Dietz, "Countermeasures --- A technical evaluation of the operational effectiveness of the planned US national missile defense system,", 2000, www.ucsusa.org.

3. Xu, S.-K., J.-H. Liu, et al. "Wideband radar echo simulation of micro-motion targets in ballistic midcourse," Journal of Astronautics, Vol. 33, No. 3, 339-345, 2012.

4. Chen, V. C., F. Li, S.-S. Ho, and H. Wechsler, "Micro-doppler effect in radar: Phenomenon, model and simulation study," IEEE Transactions on Aerospace and Electronic Systems, Vol. 42, No. 1, 2-21, 2006.
doi:10.1109/TAES.2006.1603402

5. Chen, V. C., "Doppler signatures of radar backscattering from objects with micro-motions," IET Signal Processing, Vol. 2, No. 3, 291-300, 2008.
doi:10.1049/iet-spr:20070137

6. Liu, J., "Radar signal parameter estimation and physical feature extraction of micro-motion targets,", 4, National University of Defense Technology, Changsha, 2010.

7. Mao, C. and X.-J. Xu, "Modeling of wideband radar signature for precession space objects," Acta Electronica Sinica, Vol. 39, No. 3, 636-642, 2011.

8. Yao, H.-W., X.-Z. Wei, et al. "Micro-motion characteristics of non-ideal scattering centers of midcourse targets with precession," Acta Electronica Sinica, Vol. 40, No. 9, 1844-1851, 2012.

9. Huang, P.-K., H.-C. Yin, and X.-J. Xu, Radar Target Characteristic, 86-92, Publishing House of Electronics Industry, Beijing, 2005.

10. Sun, J.-J., C.-M. Tong, P. Peng, and W.-Y. Shuai, "Simulation of dynamic RCS data of coning targets in midcourse," Science Technology and Engineering, Vol. 13, No. 16, 4562-4566, 2013.

11. Bao, Z., M.-D. Xing, and T. Wang, Radar Imaging Technology,, 24-29, Publishing House of Electronics Industry, Beijing, 2005.

12. He, S.-S., "High resolution radar signal modeling and feature extracting for micro-motion targets,", 9, National University of Defense Technology, Changsha, 2010.