Vol. 35
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-03-03
Study of Whistler Mode Wave by Injection of Relativistic Hot Electrons Beam in the Magnetosphere of Uranus
By
Progress In Electromagnetics Research M, Vol. 35, 77-86, 2014
Abstract
In present paper, the effect of relativistic hot electron beam for field aligned Whistler mode waves has been studied theoretically in the presence of AC electric field perpendicular to magnetic field. Studies have been performed using perturbative approach along with the method of characteristic solutions and are valid for comparatively small ambient magnetic field of Uranus, of the order of nano Tesla, as observed by Voyager 2. The detailed derivation and calculations has been done for dispersion relation and growth rate for magnetosphere of Uranus. Analyses are done by changing various plasma parameters which are explained in result and discussions section of this paper. Extensive study of wave-particle interactions and numerical calculations concludes that in case of injection of a distribution of particles having a positive slope in v, temperature anisotropy remains the main source of free energy. It is seen that other effective parameters for the growth of whistler mode waves are AC frequency and higher number density of hot electrons. We also learn that even the minimal presence of such energetic particles having a positive slope of distribution function and increasing power of perpendicular thermal velocity can increase the growth rate significantly in the magnetosphere of Uranus. The present work is basically based upon the theoretical investigation and mathematical analysis of the magnetosphere of Uranus, supported by satellite data.
Citation
Rama Pandey Rajbir Kaur , "Study of Whistler Mode Wave by Injection of Relativistic Hot Electrons Beam in the Magnetosphere of Uranus," Progress In Electromagnetics Research M, Vol. 35, 77-86, 2014.
doi:10.2528/PIERM14010203
http://www.jpier.org/PIERM/pier.php?paper=14010203
References

1. Stix, T. H., The Theory of Plasma Waves, McGraw-Hill Book Company, New York, 1962.

2. Sagdeev, R. Z. and A. A. Galeev, Non-linear Plasma Theory, W. A. Benjamin, Inc. Book Company, New York City, NY, 1969.

3. Scarf, F. L. and D. A. Gurnett, "A plasma wave investigation for the Voyager mission," Space Sci. Rev., Vol. 21, 289-308, 1977.
doi:10.1007/BF00211543

4. Gurnett, D. A. and F. L. Scarf, Physics of Jovian Magnetosphere, A. J. Dessler (ed.), 285, Cambridge University Press, Cambridge, 1983.

5. Lin, N., P. J. Kellogg, J. P. Thiessen, D. Lengyel-Frey, B. T. Tsurutani, and J. L. Phillips, "Whistler mode waves in the Jovian magnetosheath," J. Geophys. Res., Vol. 99, No. A12, 23527-23540, 1994.
doi:10.1029/94JA01998

6. Hobara, Y., S. Kanemaru, M. Hayakawa, and D. A. Gurnett, "On estimating the amplitude of Jovian whistlers observed by Voyager 1 and implications concerning lightning," J. Geophys. Res., Vol. 102, No. A4, 7115-7125, 1997.
doi:10.1029/96JA03996

7. Kurth, W. S., D. A. Gurnett, A. M. Persoon, A. Roux, S. J. Bolton, and C. J. Alexander, "The plasma wave environment of Europa," Planet. Space Sci., Vol. 49, No. 3-4, 345-363, 2001.
doi:10.1016/S0032-0633(00)00156-2

8. Kurth, W. S., D. A. Gurnett, and F. L. Scarf, "Sporadic narrowband radio emissions from Uranus," J. Geophys. Res., Vol. 91, No. 11, 11958-11964, 1986.
doi:10.1029/JA091iA11p11958

9. Orlowski, D. S. and C. T. Russell, "Comparison of properties of upstream whistlers at different planets," Adv. Space Res., Vol. 16, 137-141, 1995.
doi:10.1016/0273-1177(95)00220-9

10. Gurnett, D. A., F. L. Scarf, W. S. Kurth, and R. L. Poynter, "First plasma wave observation at Uranus," Science, Vol. 233, No. 4759, 106-109, 1986.
doi:10.1126/science.233.4759.106

11. Ness, N. F., M. H. Acuna, K. W. Behannon, L. F. Burlaga, J. E. P. Connerney, R. P. Lepping, and F. M. Neubauer, "Magnetic fields at Uranus," Science, Vol. 233, No. 4759, 85-89, 1986.
doi:10.1126/science.233.4759.85

12. Hudson, M. K., J. T. Clark, and J. A. Warren, "Ionospheric dynamo theory for production of far ultraviolet emissions on Uranus," J. Geophys. Res., Vol. 94, 6517-6522, 1989.
doi:10.1029/JA094iA06p06517

13. Clarke, J. T., M. K. Hudson, and Y. L. Yung, "The excitation of the far ultraviolet eclectroglow emission on Uranus, Saturn and Jupiter," J. Geophys. Res., Vol. 92, No. A13, 15139-15147, 1987.
doi:10.1029/JA092iA13p15139

14. Pandey, R. P., K. M. Singh, and R. S. Pandey, "A theoretical study of the whistler mode instability at the Uranian bow shock," Earth, Moon and Planets, Vol. 87, No. 2, 59-71, 2001.
doi:10.1023/A:1017568822606

15. Wygant, J. R., M. Bensadoum, and F. S. Mozer, "Electric field measurements at subcritical oblique bow shock crossings," J. Geophys. Res., Vol. 92, No. A10, 11109-11121, 1987.
doi:10.1029/JA092iA10p11109

16. Winckler, J. R., P. R. Malcolm, R. L. Arnoldy, W. J. Burke, K. N. Erickson, J. Ernstmeyer, R. C. Franz, T. J. Hallinan, P. J. Kellogg, S. J. Monson, K. A. Lynch, G. Murphy, and R. J. Nemzek, "ECHO 7: An electron beam experiment in magnetosphere," Eos, Transactions American Geophysical Union, Vol. 70, No. 25, 657-668, 1989.
doi:10.1029/89EO00194

17. Winckler, J. R., "The application of arti¯cial electron beams to magnetospheric research," Reviews of Geophysics, Vol. 18, No. 3, 659-682, 1980.
doi:10.1029/RG018i003p00659

18. Winglee, R. M. and P. J. Kellogg, "Electron beam injection during active experiments: Electromagnetic wave emissions," J. Geophys. Res., Vol. 95, No. A5, 6167-6190, 1990.
doi:10.1029/JA095iA05p06167

19. Pandey, R. P., S. M. Karim, K. M. Singh, and R. S. Pandey, "Effect of cold plasma injection on whistler mode instability triggered by perpendicular AC electric field at Uranus," Earth, Moon and Planets, Vol. 91, No. 4, 195-207, 2003.
doi:10.1023/A:1026240104646

20. Misra, K. D. and R. S. Pandey, "Generation of whistler emissions by injection of hot electrons in the presence of a perpendicular as electric field," J. Geophys. Res., Vol. 100, No. A10, 19405-19411, 1995.
doi:10.1029/95JA01083

21. Sazhin, S. S., "Oblique whistler mode growth and damping in a hot anisotropic plasma," Planet Space Science, Vol. 36, 663-667, 1988.
doi:10.1016/0032-0633(88)90114-6

22. Chu, K. R. and J. L. Hirshfield, "Comparitive study of the axial and azimuthal bunching mechanism in electromagnetic cyclotron instability," Phys. Fluid, Vol. 21, 461, 1978.
doi:10.1063/1.862245

23. Pandey, R. S. and R. Kaur, "Generation of low frequency electromagnetic wave by injection of cold electron for relativistic and non-relativistic subtracted bi-Maxwellian distribution with perpendicular AC electric field for magnetosphere of Uranus," Progress In Electromagnetic Research B, Vol. 45, 337-352, 2012.
doi:10.2528/PIERB12091803

24. Pandey, R. S., K. Rajbir, S. Kumar, and K. Mukesh, "Study of VLF mode instability with AC electric field for subtracted bi-Maxwellian in the magnetosphere of Uranus," J. Emerging Trends in Eng. and Applied Sci., Vol. 4, No. 2, 201-206, 2013.

25. Misra, K. D. and T. Haile, "Effect of AC electric field on the whistler mode instability in the magnetosphere," J. Geophys. Res., Vol. 98, No. A6, 9297-9305, 1993.
doi:10.1029/92JA02558

26. Bret, A., M. C. Firpo, and C. Deutsch, "Electromagnetic instabilities for relativistic beam-plasma interaction in whole k space: Nonrelativistic beam and plasma temperature effects," Phys. Review E, Vol. 7, 016403, 2005.
doi:10.1103/PhysRevE.72.016403