1. Stephenson, J. M. and J. Corda, "Computation of torque and current in doubly salient reluctance motors from nonlinear magnetization data," IEE Proceedings, Vol. 126, No. 5, 393-396, 1979. Google Scholar
2. Chi, H. P., R. L. Lin, and J. F. Chen, "Simplified flux linkage model for switched reluctance motors," IEE Proceedings of Electrical Power Application, Vol. 152, No. 3, 577-583, 2005.
doi:10.1049/ip-epa:20045207 Google Scholar
3. Roux, C. and M. M. Morcos, "A simple model for switched reluctance motors," IEEE Power Engineering Review, Vol. 20, No. 10, 49-52, 2000.
doi:10.1109/39.876885 Google Scholar
4. Xue, X. D., K. W. E. Cheng, S. L. Ho, and K. F. Kwok, "Trigonometry-based numerical method to compute nonlinear magnetic characteristics in switched reluctance motor," IEEE Transactions on Magnetics, Vol. 43, No. 4, 1845-1848, 2007.
doi:10.1109/TMAG.2007.892619 Google Scholar
5. Ilic'-Spong, M., R. Marino, S. M. Peresada, and D. Taylor, "Feedback linearizing control of switched reluctance motors," IEEE Transactions on Automation Control, Vol. 32, No. 5, 371-379, 1987.
doi:10.1109/TAC.1987.1104616 Google Scholar
6. Xu, L. and E. Ruchkstater, "Direct modeling of switched reluctance machine by coupled field-circuit method," IEEE Transactions Energy Conversion, Vol. 10, No. 3, 446-454, 1995.
doi:10.1109/60.464867 Google Scholar
7. Sun, Y., J. Wu, and Q. Xiang, "The mathematic model of bearingless switched reluctance motor based on the finite-element analysis," Proceedings of the CSEE, Vol. 27, No. 12, 33-40, 2007. Google Scholar
8. Sahoo, N. C., S. K. Panda, and P. K. Dash, "A fuzzy logic based current modulator for torque ripple minimization in switched reluctance motors," Electric Machines and Power Systems, Vol. 27, No. 2, 181-194, 1999.
doi:10.1080/073135699269389 Google Scholar
9. Elmas, C., S. Sagiroglu, I. Colak, and G. Bal, "Modeling of a nonlinear switched reluctance drive based on artificial neural networks," Power Electronics and Variable-Speed Drives, 7-12, 1994. Google Scholar
10. Cai, J., Z. Q. Deng, R. Y. Qi, Z. Y. Liu, and Y. H. Cai, "A novel BVC-RBF neural network based system simulation model for switched reluctance motor," IEEE Transactions on Magnetics, Vol. 47, No. 4, 830-838, 2011.
doi:10.1109/TMAG.2011.2105273 Google Scholar
11. Xiu, J., C. Xia, and S. Wang, "Modeling of switched reluctance motor based on pi-sigma fuzzy neural network," Transactions of China Electrotechnical Society, Vol. 24, No. 8, 46-64, 2009. Google Scholar
12. Liang, D. and W. Ding, "Modeling and predicting of a switched reluctance motor drive using radial basis function network-based adaptive fuzzy system," IET Electric Power Applications, Vol. 3, No. 3, 218-230, 2009.
doi:10.1049/iet-epa.2008.0096 Google Scholar
13. Xu, A., Y. Fan, and Z. Li, "Modeling of switched reluctance motor based on GA-ANFIS," Electric Machines and Control, Vol. 15, No. 7, 54-59, 2011. Google Scholar
14. Si, L., H. Lin, and Z. Liu, "Modeling of switched reluctance motors based on LS-SVM," Proceedings of the CSEE, Vol. 27, No. 6, 26-30, 2007. Google Scholar
15. Shang, W., S. Zhao, and Y. Shen, "Application of LSSVM optimized by genetic algorithm to modeling of switched reluctance motor," Proceedings of the CSEE, Vol. 29, No. 12, 65-69, 2009. Google Scholar
16. Lachman, T., T. R. Mohamad, and C. H. Fong, "Nonlinear modeling of switched reluctance motors using artificial intelligence techniques," IEE Proceedings of Electrical Power Application, Vol. 151, No. 1, 53-60, 2004.
doi:10.1049/ip-epa:20040025 Google Scholar
17. Cai, Y., Z. Xu, and C. Gao, "Building of a nonlinear model of switched reluctance motor by BP neural networks," Journal of Tianjin University, Vol. 38, No. 10, 869-873, 2005. Google Scholar