Vol. 35
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-04-06
Three-Dimensional Analytical Model for an Axial-Field Magnetic Coupling
By
Progress In Electromagnetics Research M, Vol. 35, 173-182, 2014
Abstract
In this paper, we propose an analytical method for modeling a permanent magnets axial field magnetic coupling. The three-dimensional model takes into account the radial fringing effects of the coupler. The analytical solution requires resolving the Laplace equation in low permeability subdomains. The magnetic field calculation allows the determination of global quantities like axial force and torque. 3D finite element computations as well as measurements validate the proposed model.
Citation
Bastien Dolisy Thierry Lubin Smail Mezani Jean Lévêque , "Three-Dimensional Analytical Model for an Axial-Field Magnetic Coupling," Progress In Electromagnetics Research M, Vol. 35, 173-182, 2014.
doi:10.2528/PIERM14031405
http://www.jpier.org/PIERM/pier.php?paper=14031405
References

1. Yonnet, J. P., "Permanent magnet bearings and couplings," IEEE Trans. Magn., Vol. 17, No. 1, 1169-1173, 1981.
doi:10.1109/TMAG.1981.1061166

2. Furlani, E. P., "Formulas for the force and torque of axial couplings," IEEE Trans. Magn., Vol. 29, No. 5, 2295-2301, Sep. 1993.
doi:10.1109/20.231636

3. Yonnet, J. P., S. Hemmerlin, E. Rulliere, and G. Lemarquand, "Analytical calculation of permanent magnet couplings," IEEE Trans. Magn., Vol. 29, No. 6, 2932-2934, Nov. 1993.
doi:10.1109/20.280913

4. Furlani, E., S. Reznik, and A. Kroll, "A three-dimensional field solution for radially polarized cylinders," IEEE Trans. Magn., Vol. 31, No. 1, 844-851, Jan. 1995.
doi:10.1109/20.364587

5. Furlani, E. P., R. Wang, and H. Kusnadi, "A three-dimensional model for computing the torque of radial couplings," IEEE Trans. Magn., Vol. 31, No. 5, 2522-2525, Sep. 1995.
doi:10.1109/20.406554

6. Yao, Y. D., G. J. Chiou, D. R. Huang, and S. J. Wang, "Theoretical computations for the torque of magnetic coupling," IEEE Trans. Magn., Vol. 31, 1881-1884, May 1995.

7. Waring, R., J. Hall, K. Pullen, and M. R. Etemad, "An investigation of face type magnetic couplers," Proc. Inst. Mech. Engrs, Part A, Vol. 210, No. 4, 263-272, 1996.
doi:10.1243/PIME_PROC_1996_210_045_02

8. Furlani, E. P., "Analysis and optimization of synchronous couplings," J. Appl. Phys., Vol. 79, 4692-4694, 1996.
doi:10.1063/1.361872

9. Furlani, E. P. and M. A. Knewtson, "A three-dimensional field solution for permanent-magnet xial-field motors," IEEE Trans. Magn., Vol. 33, No. 3, 2322-2325, May 1997.
doi:10.1109/20.573849

10. Elies, P. and G. Lemarquand, "Analytical optimization of the torque of a permanent-magnet coaxial synchronous coupling," IEEE Trans. Magn., Vol. 34, No. 4, 2267-2273, Jul. 1998.
doi:10.1109/20.703865

11. Charpentier, J. F. and G. Lemarquand, "Optimal design of cylindrical air-gap synchronous permanent magnet couplings," IEEE Trans. Magn., Vol. 35, No. 2, 1037-1046, Mar. 1999.
doi:10.1109/20.748851

12. Charpentier, J. F., N. Fadli, and J. Jennane, "Study of ironless permanent magnet devices being both a coupling and an axial bearing for naval propulsion," IEEE Trans. Magn., Vol. 39, No. 5, 3235-3237, Sep. 2003.
doi:10.1109/TMAG.2003.816732

13. Rakotoarison, H. L., J. P. Yonnet, and B. Delinchant, "Using Coulombian approach for modelling scalar potential and magnetic ¯eld of a permanent magnet with radial polarization," IEEE Trans. Magn., Vol. 43, No. 4, 1261-1264, Apr. 2007.
doi:10.1109/TMAG.2007.892316

14. Ravaud, R. and G. Lemarquand, "Comparison of the Coulombian and Amperian current models for calculating the magnetic ¯eld produced by arc-shaped permanent magnets radially magnetized," Progress In Electromagnetics Research, Vol. 95, 309-327, 2009.

15. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Permanent magnet couplings: Field and torque three-dimensional expressions based on the Coulombian model," IEEE Trans. Magn., Vol. 45, No. 4, 1950-1958, Apr. 2009.
doi:10.1109/TMAG.2008.2010623

16. Ravaud, R., V. Lemarquand, and G. Lemarquand, "Analytical design of permanent magnet radial couplings," EEE Trans. Magn., Vol. 46, No. 11, 3860-3865, Nov. 2010.
doi:10.1109/TMAG.2010.2056379

17. Smeets, J. P. C., T. T. Overboom, J. W. Jansen, and E. A. Lomonova, "Three-dimensional magnetic field modeling for coupling calculation between air-cored rectangular coils," IEEE Trans. Magn., Vol. 47, No. 10, 2935-2938, Oct. 2011.
doi:10.1109/TMAG.2011.2145365

18. Lubin, T., S. Mezani, and A. Rezzoug, "Exact analytical method for magnetic field computation in the air-gap of cylindrical electrical machines considering slotting effects," IEEE Trans. Magn., Vol. 46, No. 4, 1092-1099, Apr. 2010.
doi:10.1109/TMAG.2009.2036257

19. Lubin, T., S. Mezani, and A. Rezzoug, "Simple analytical expressions for the force and torque of axial magnetic couplings," EEE Trans. Energy Convers., Vol. 27, No. 2, 536-546, Jun. 2012.
doi:10.1109/TEC.2012.2183372

20. Hornreich, R. M. and S. Shtrikman, "Optimal design of synchronous torque couplers," IEEE Trans. Magn., Vol. 14, No. 5, 800-802, Sep. 1978.
doi:10.1109/TMAG.1978.1060016

21. Azzouzi, J., G. Barakat, and B. Dakyo, "Quasi-3-D analytical modeling of the magnetic field of an axial °ux permanent-magnet synchronous machine," IEEE Trans. Energy Convers., Vol. 20, No. 4, 746-752, Dec. 2005.
doi:10.1109/TEC.2005.845538

22. Tiegna, H., A. Bellara, Y. Amara, and G. Barakat, "Analytical modeling of the open-circuit magnetic field in axial flux permanent-magnet machines with semi-closed slots," IEEE Trans. Magn., Vol. 48, No. 3, 1212-1226, Mar. 2012.
doi:10.1109/TMAG.2011.2171979

23. De la Barriµere, O., S. Hlioui, H. Ben Ahmed, M. Gabsi, and M. LoBue, "Three-dimensional analytical modeling of a permanent-magnet linear actuator with circular magnets," IEEE Trans. Magn., Vol. 45, No. 9, 3608-3616, Sep. 2010.
doi:10.1109/TMAG.2010.2045507

24. De la Barriµere, O., S. Hlioui, H. Ben Ahmed, M. Gabsi, and M. LoBue, "3-D formal resolution of Maxwell equations for the computation of the no-load flux in an axial flux permanent-magnet synchronous machine," IEEE Trans. Magn., Vol. 48, No. 1, 128-136, Jan. 2012.
doi:10.1109/TMAG.2011.2167347