Vol. 50
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-04-30
A Differential k -Band UWB Transmitter for Short Range Radar Application with Continuous Running Local Oscillator
By
Progress In Electromagnetics Research C, Vol. 50, 1-9, 2014
Abstract
The design of a differential K-band UWB(Ultra Wideband) Short Range Radar (SRR) transmitter in 90nm bulk CMOS is presented. Implementation of SRRs in deep submicron CMOS technology is attractive, in terms of cost and monolithic integration of RF font-end with signal base-band processor. The transmitted pulse bandwidth limits the range resolution of the radar system. Due to the wide bandwidth and high frequency of CMOS implementation, UWB transmitters in the K-band are challenging to make and critical for the system performance. The design presented is based on frequency up conversion using a double balanced mixer. The differential output is combined and matched with the antenna using an on-chip balun. To mitigate local oscillator (LO) leakage of UWB differential transmitters we propose a new Pulse Generator (PG) design. A switching technique is used to minimize the LO leakage enabling continuous wave operation with very wideband pulses. Measurements of the proposed transmitter achieves a -10 dB bandwidth (BW) of 5 GHz. Using a Pulse Repetition Frequency (PRF) of 100 MHz the peak average power is -40 dBm. Compared to measured transmitter performance of a single balanced mixer design, the LO leakage of this dual balanced mixer is decreased with more than 20 dB, and is lower than the peak average power of the pulse. It consumes 11 mW from a 1.2 v supply where 6 mW is from the LO.
Citation
Kristian G. Kjelgard, and Tor Sverre Lande, "A Differential k -Band UWB Transmitter for Short Range Radar Application with Continuous Running Local Oscillator," Progress In Electromagnetics Research C, Vol. 50, 1-9, 2014.
doi:10.2528/PIERC14032104
References

1. Murad, M., J. Nickolaou, G. Raz, J. S. Colburn, and K. Geary, "Next generation short range radar (SRR) for automotive applications," IEEE Radar Conference (RADAR), 0214-0219, May 2012.

2. Lee, S., S. Kong, C.-Y. Kim, and S. Hong, "A low-power K-band CMOS UWB radar transceiver IC for short range detection," IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 503-506, Jun. 2012.

3. Lee, S., C.-Y. Kim, and S. Hong, "A K-band CMOS UWB radar transmitter with a bi-phase modulating pulsed oscillator," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 5, 1405-1412, May 2012.
doi:10.1109/TMTT.2012.2188814

4. Yang, J., G. Pyo, C.-Y. Kim, and S. Hong, "A 24-GHz CMOS UWB radar transmitter with compressed pulses," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 4, 1117-1125, Apr. 2012.
doi:10.1109/TMTT.2012.2184136

5. Jain, V., S. Sundararaman, and P. Heydari, "A 22-29 GHz UWB pulse-radar receiver front-end in 0.18-μm CMOS," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 8, 1903-1914, Aug. 2009.
doi:10.1109/TMTT.2009.2025420

6. El-Gabaly, A. M. and C. E. Saavedra, "A quadrature pulse generator for short-range UWB vehicular radar applications using a pulsed oscillator and a variable attenuator," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 58, No. 10, 2285-2295, 2011.

7. Taylor, J. D., Ultrawideband Radar: Applications and Design, Chapter 11, CRC Press, 2012.
doi:10.1201/b12356

8. Hjortland, H. A. and T. S. Lande, "CTBV integrated impulse radio design for biomedical applications," IEEE Transactions on Biomedical Circuits and Systems, Vol. 3, No. 2, 79-88, Apr. 2009.
doi:10.1109/TBCAS.2009.2014962

9. Novelda Impulse Radar, http://www.novelda.no, .
doi:10.1109/TBCAS.2009.2014962

10. Oncu, A., B. B. M. Wasanthamala Badalawa, and M. Fujishima, "22-29 GHz ultra-wideband CMOS pulse generator for short-range radar applications," IEEE Journal of Solid-State Circuits, Vol. 42, No. 7, 1464-1471, Jul. 2007.
doi:10.1109/JSSC.2007.899099

11. Kjelgard, K. G. and T. S. Lande, "A 26 GHz UWB CMOS IR-UWB transmitter with on-chip balun," NORCHIP, 1-4, Nov. 2012.

12. Kjelgard, K. G. and T. S. Lande, "Design of 26 GHz UWB CMOS pulse-mode transmitter with on-chip balun for SRR applications," 2012 IEEE International Conference on Ultra-Wideband (ICUWB), Sep. 2012.

13. Johansen, T. and V. Krozer, "Analysis and design of lumped element marchand baluns," 17th International Conference on Microwaves, Radar and Wireless Communications, 2008, MIKON 2008, 1-4, May 2008.