Vol. 47
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-08-04
A Modified Generalized Memory Polynomial Model for RF Power Amplifiers
By
Progress In Electromagnetics Research Letters, Vol. 47, 97-102, 2014
Abstract
A modified generalized memory polynomial model (MGMP) is proposed for RF power amplifiers (PAs). The MGMP model is derived by applying complexity-reduced technique to the generalized memory polynomial model (GMP), and the least square (LS) algorithm is used for coefficient extraction. The proposed MGMP model is assessed using a GaN Class-F PA driven by two modulated signals (a WCDMA 1001 signal and a single carrier 16 QAM signal with 20 MHz bandwidth). The experimental results demonstrate that the MGMP model outperforms the memory polynomial (MP) model and the generalized memory polynomial (GMP) model. Compared with MP model, the MGMP model shows a normalized mean square error (NMSE) improvement of 2.13 dB in forward modeling, average adjacent channel power ratio (ACPR) improvement of 2.62/2.11 dB in the DPD application with almost identical number of model coefficients. In contrast with the GMP model, the MGMP model can achieve comparable forward modeling and linearization performance results, but reduces approximately 40% of coefficients.
Citation
Gang Sun, Cuiping Yu, Yuan'an Liu, Shulan Li, and Jiuchao Li, "A Modified Generalized Memory Polynomial Model for RF Power Amplifiers," Progress In Electromagnetics Research Letters, Vol. 47, 97-102, 2014.
doi:10.2528/PIERL14060307
References

1. El Maazouzi, L., A. Mediavilla, and P. Colantonio, "A contribution to linearity improvement of a highly efficient PA for WIMAX applications," Progress In Electromagnetics Research, Vol. 119, 59-84, 2011.
doi:10.2528/PIER11051602

2. Hashmi, M. S., Z. S. Rogojan, and F. M. Ghannouchi, "A flexible dual-inflection point RF predistortion linearizer for microwave power amplifiers," Progress In Electromagnetics Research C, Vol. 13, 1-18, 2010.
doi:10.2528/PIERC10012609

3. Hashmi, M. S., Z. S. Rogojan, S. R. Nazifi, and F. M. Ghannouchi, "A broadband dual-inflection point RF predistortion linearizer using backward reflection topology," Progress In Electromagnetics Research C, Vol. 13, 121-134, 2010.
doi:10.2528/PIERC10032801

4. Kim, J. and K. Konstantinou, "Digital predistortion of wideband signals based on power amplifier model with memory," Electron. Lett., Vol. 37, No. 23, 1417-1418, 2001.
doi:10.1049/el:20010940

5. Ding, L., G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, "A robust digital baseband predistorter constructed using memory polynomials," IEEE Trans. Commun., Vol. 52, No. 1, 159-165, Jan. 2004.
doi:10.1109/TCOMM.2003.822188

6. Morgan, D. R., Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, "A generalized memory polynomial model for digital predistortion of RF power amplifiers," IEEE Trans. Signal Process., Vol. 54, No. 10, 3852-3860, Oct. 2006.
doi:10.1109/TSP.2006.879264

7. Du, T., C. Yu, Y. Liu, J. Gao, S. Li, and Y. Wu, "A new accurate Volterra-based model for behavioral modeling and digital predistortion of RF power amplifiers," Progress In Electromagnetics Research C, Vol. 29, 205-218, 2012.
doi:10.2528/PIERC12032707

8. Sun, G., C. Yu, Y. Liu, S. Li, and J. Li, "An accurate complexity-reduced simplified Volterra series for RF power amplifiers," Progress In Electromagnetics Research C, Vol. 47, 157-164, 2014.
doi:10.2528/PIERC13121201

9. Liu, Y.-J., J. Zhou, W. Chen, and B.-H. Zhou, "A robust augmented complexity-reduced generalized memory polynomial for wideband RF power amplifiers," IEEE Trans. Ind. Electron., Vol. 61, No. 5, 2389-2401, May 2014.
doi:10.1109/TIE.2013.2270217

10. Rawat, M., F. M. Ghannouchi, and K. Rawat, "Three-layered biased memory polynomial for dynamic modeling and predistortion of transmitters with memory," IEEE Trans. Circuits Syst. I. Reg. Papers, Vol. 6, No. 3, 768-777, Mar. 2013.
doi:10.1109/TCSI.2012.2215740

11. Zhu, A., J. C. Pedro, and T. J. Brazil, "Dynamic deviation reduction based Volterra behavioral modeling of RF power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 12, 4323-4332, 2006.
doi:10.1109/TMTT.2006.883243

12. Yu, C. and Y. Liu, "Triangular memory polynomial predistorter," 5th International Conference on Wireless Communications, Networking and Mobile Computing, WiCom'09, 1-4, Beijing, Sep. 24-26, 2009.