Vol. 48
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-08-07
The Electromagnetic Properties of the Generalized Cantor Stack in Spherical Multilayered Systems
By
Progress In Electromagnetics Research Letters, Vol. 48, 1-6, 2014
Abstract
By the transfer matrix approach we numerically study the electromagnetic properties (narrow peak positions) of the transmission spectra for microspheres coated by a multilayered stack with the generalized Cantor structure (fractal). As opposed to the standard Cantor system with removed γ/3 [γ=1] section we consider here the solid stack with Si/SiO2 layers at general γ value. In such a solid composition the SiO2 layers replace the empty Cantor sections and the parameter γ acquires meaning of a specific control parameter. At successive generations the central layers (in blocks of the spherical stack) acquire a progressive decreased width that leads to generation of the radially inhomogeneous defects. We show that the wave phase interference in such a fractal pattern leads to formation of very narrow electromagnetic transmittance resonances that can be used in modern optoelectronics.
Citation
Gennadiy Burlak, Maricruz Najera Villeda, and Rene Santaolaya Salgado, "The Electromagnetic Properties of the Generalized Cantor Stack in Spherical Multilayered Systems," Progress In Electromagnetics Research Letters, Vol. 48, 1-6, 2014.
doi:10.2528/PIERL14061001
References

1. Braginsky, V. B., M. L. Gorodetsky, and V. S. Ilchenko, "Quality-factor and nonlinear properties of optical whispering-gallery modes," Phys. Lett. A, Vol. 137, 393-399, 1989.
doi:10.1016/0375-9601(89)90912-2

2. Astratov, V., "Fundamentals and applications of microsphere resonator circuits in photonic microresonator research and applications," Springer Series in Optical Sciences, Vol. 156/2010, 423-457, 2010.
doi:10.1007/978-1-4419-1744-7_17

3. Stratton, A., Electromagnetic Theory, McGraw-Hill, New York, 1941.

4. Brady, D., G. Papen, and J. E. Sipe, "Spherical distributed dielectric resonators," J. Opt. Soc. Am. B, Vol. 10, 644-651, 1993.
doi:10.1364/JOSAB.10.000644

5. Burlak, G., S. Koshevaya, J. Sanchez-Mondragon, et al. "Electromagnetic oscillations in the multilayer spherical resonator," Opt. Commun., Vol. 180, 49-60, 2000.
doi:10.1016/S0030-4018(00)00697-0

6. Chan, C. T., W. Y. Zhang, Z. L. Wang, et al. "Photonic band gaps from metallo-dielectric spheres," Physica B, Vol. 279, 150-159, 2000.
doi:10.1016/S0921-4526(99)00705-X

7. Miyazaki, H., H. Miyazaki, K. Ohtaka, et al. "Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically arranged under a scanning electron microscope," J. Appl. Phys., Vol. 87, 7152-7159, 2000.
doi:10.1063/1.372962

8. Talebi, R., K. Abbasian, and A. Rostami, "Analytical modeling of quality factor for shell type microsphere resonators," Progress In Electromagnetics Research B, Vol. 30, 293-311, 2011.

9. Astratov, V. N., A. Darafsheh, M. D. Kerr, K. W. Allen, and N. M. Fried, "Focusing microprobes based on integrated chains of microspheres," PIERS Online, Vol. 6, No. 8, 793-799, 2010.
doi:10.2529/PIERS091220210416

10. Astratov, V. N., S. P. Ashili, and A. M. Kapitonov, "Optical properties of mesoscopic systems of coupled microspheres," PIERS Online, Vol. 3, 278-280, 2007.
doi:10.2529/PIERS060908001922

11. Burlak, G., "Enhanced optical fields in a multilayered microsphere with quasiperiodic spherical stack," Phys. Scr., Vol. 76, 571-576, 2007.
doi:10.1088/0031-8949/76/5/027

12. Burlak, G. and A. D?az-de-Anda, "Optical fields in a multilayered microsphere with quasiperiodic spherical stack," Optics. Commun., Vol. 281, 181-189, 2008.
doi:10.1016/j.optcom.2007.09.026

13. Burlak, G., A. D′?az-de-Anda, and A. Zamudio-Lara, "The narrow transmission peaks and field confinement produced by defects in a multilayered microsphere," Optics Commun., Vol. 285, 1542-1549, 2012.
doi:10.1016/j.optcom.2011.11.101

14. Gouyet, J. F., Physics and Fractal Structures, Springer, Berlin, 1996.

15. Zhong, Y. X. and Z. H. Wang, "Super narrow bandpass filter using fractal cantor structures," Int. J. Infrared. Milli., Vol. 25, 1315-1323, 2004.

16. Burlak, G., The Classical and Quantum Dynamics of the Multispherical Nanostructures, Imperial College Press, 2004.

17. Panofsky, W. and M. Phillips, Classical Electricity and Magnetism, 2nd Edition, Chapter 13, Addison-Wesley Publishing Company, Reading, MA, 1962.