Vol. 48
Latest Volume
All Volumes
PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-08-12
Design of a Compact Two Element MIMO Antenna System with Improved Isolation
By
Progress In Electromagnetics Research Letters, Vol. 48, 27-32, 2014
Abstract
A novel compact two-element MIMO (Multiple Input Multiple Output) antenna system operating from 6.1-7.8 GHz is proposed for wireless applications. The developed antenna system resonates at 6.8 GHz frequency, giving an impedance bandwidth of 25% (based on S11<-10 dB). An efficient technique is proposed to reduce the mutual coupling developed in the antenna system by employing a simple microstrip patch element in between the antennas. Using the proposed method, the mutual coupling is reduced to around -33 dB at the resonant frequency and maintaining the overall mutual coupling less than -20 dB in the operating band. The experimental models are developed for both the MIMO systems i.e. without and with patch element between the antennas and the results are compared with simulated results. Also, Enveloped Correlation Coefficient (ECC) between the two antennas is calculated and compared.
Citation
Jagadeesh Babu Kamili, Rabah Wasel Aldhaheri, Mohammed Younus Talha, and Ibrahim S. Alruhaili, "Design of a Compact Two Element MIMO Antenna System with Improved Isolation," Progress In Electromagnetics Research Letters, Vol. 48, 27-32, 2014.
doi:10.2528/PIERL14070307
References

1. Foschini, G. J. and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Communications, Vol. 6, No. 3, 311-335, 1998.
doi:10.1023/A:1008889222784

2. Han, M. S. and J. Choi, "MIMO antenna using a decoupling network for next generation mobile application," 9th International Symposium on Communications and Information Technology, ISCIT 2009, 568-571, 2009.
doi:10.1109/ISCIT.2009.5341181

3. Nikolic, M. M., A. R. Djordevic, and A. Nehorai, "Microstrip antennas with suppressed radiation in horizontal directions and reduced coupling," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3469-3476, 2005.
doi:10.1109/TAP.2005.858847

4. Abouda, A. A. and S. G. Haggman, "Effect of mutual coupling capacity of MIMO wireless channels in high SNR scenario," Progress In Electromagnetics Research, Vol. 65, 27-40, 2006.
doi:10.2528/PIER06072803

5. Chou, H. T., H. C. Cheng, H. T. Hsu, and L. R. Kuo, "Investigations of isolation improvement techniques for multiple input multiple output (MIMO) WLAN portable terminal applications," Progress In Electromagnetics Research, Vol. 85, 349-366, 2008.
doi:10.2528/PIER08090905

6. Yu, A. and X. Zhang, "A novel method to improve the performance of microstrip antenna arrays using a dumbbell EBG structure," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 170-172, 2003.

7. Caminita, F., S. Costanzo, G. DiMassa, G. Guarnieri, S. Maci, G. Mauriello, and I. Venneri, "Reduction of patch antenna coupling by using a compact EBG formed by shorted strips with interlocked branch-stubs," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 811-814, 2009.
doi:10.1109/LAWP.2009.2021589

8. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 57-59, 2010.
doi:10.1109/LAWP.2010.2042565

9. Kakoyiannis, C. G. and P. Constantinou, "Compact printed arrays with embedded coupling mitigation for energy efficient wireless sensor networking," International Journal of Antennas and Propagation, Vol. 2010, 1-18, Hindawi, 2010.
doi:10.1155/2010/596291

10. Habashi, A., J. Nourinia, and C. Ghobadi, "Mutual coupling reduction between very closely spaced patch antennas using low-profile folded split-ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 862-865, 2011.
doi:10.1109/LAWP.2011.2165931

11. Farsi, S., H. Aliakbarian, B. Nauwelaers, and G. A. E. Vandenbosch, "Mutual coupling reduction between planar antenna by using a simple microstrip U-section," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1501-1503, 2012.
doi:10.1109/LAWP.2012.2232274

12. Yang, F., X.-X. Zhang, X. Ye, and Y. Rahmat-Samii, "Wide-band E-shaped patch antennas for wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 7, 1094-1100, 2001.
doi:10.1109/8.933489

13. Chung, K. L. and S. Kharkovsky, "Mutual coupling and gain enhancement using angular offset elements in circularly polarized patch array," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1122-1124, 2013.
doi:10.1109/LAWP.2013.2280656

14. Payandehjoo, K. and R. Abhari, "Highly-isolated unidirectional multi-slot-antenna systems for enhanced MIMO performance," International Journal of RF and Microwave Computer Aided Engineering, Vol. 24, 289-297, 2014.
doi:10.1002/mmce.20759

15. Mak, A. C. K., C. R. Rowell, and R. D. Murch, "Isolation enhancement between two closely packed antennas," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 11, 3411-3419, 2008.
doi:10.1109/TAP.2008.2005460

16. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity Performance from input parameter description," Electronics Letters, Vol. 39, No. 9, 705-707, 2003.
doi:10.1049/el:20030495

17. Li, W., W. Lin, and G. Yang, "A compact MIMO antenna system design with low correlation from 1710 MHz to 2690 MHz," Progress In Electromagnetics Research, Vol. 144, 59-65, 2014.
doi:10.2528/PIER13111305