Vol. 54
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-10-13
A Wideband and High Gain Dual-Polarzied Antenna Design by a Frequency-Selective Surface for WLAN Application
By
Progress In Electromagnetics Research C, Vol. 54, 57-66, 2014
Abstract
A new dual-polarized antenna loading frequency-selective surface (FSS) is proposed for 5G wireless local networks (WLANs) application. The antenna consists of two orthogonal bow-tie dipoles and a ground plane. A new wideband FSS is designed comprising ring-slot connecting rectangular slots. The reflection coefficient of wideband FSS is less than 0.9 from 4-6.5 GHz. The phase of reflection coefficient is -163°at 5.5 GHz. The novel cell analyzed by the equivalent circuit is given and simulated. The wideband FSS is employed as a superstrate layer for bandwidth enhancement and radiation gain improvement of the antenna. After loading wideband FSS, the measured bandwidth is 5.3-6.3 GHz (17.2%) with S11 and S22 both less than -10 dB, which cover various 5G WLAN bandwidths. The gain of the antenna is 12.1 dBi at 5.5 GHz. The bandwidth of antenna with FSS increases 40%, and gain improves 5.6 dBi. The simulated and measured results agree well.
Citation
Hua Zhu, Yang Yu, Xiuping Li, and Bo Ai, "A Wideband and High Gain Dual-Polarzied Antenna Design by a Frequency-Selective Surface for WLAN Application," Progress In Electromagnetics Research C, Vol. 54, 57-66, 2014.
doi:10.2528/PIERC14072801
References

1. See, T. S. P. and Z. N. Chen, "Design of dual-polarization stackedarrays for ISM band applications," Microw. Opt. Technol. Lett., Vol. 38, 142-147, Jul. 2003.
doi:10.1002/mop.10998

2. Chang, F. S., H. T. Chen, K. C. Chao, and K. L. Wong, "Dual-polarized probe-fed patch antenna with highly decoupled ports for WLAN basestation," IEEE Antennas Propag. Soc. Int. Symp. Dig., 101-109, Monterey, CA, USA, 2004.

3. Guo, Y. X. and K. M. Luk, "Dual-polarized dielectric resonator antennas," IEEE Transactions on Antennas and Propagation, Vol. 51, 1120-1124, May 2003.
doi:10.1109/TAP.2003.811486

4. Su, S.-W. and C.-T. Lee, "Printed, low-cost, dual-polarized dual-loop-antenna system for 2.4/5GHz WLAN access points," Proceedings of the 5th European Conference Antennas and Propagation (EUCAP), 1253-1257, 2011.

5. Zheng, W. C., L. Zhang, Q. X. Li, and Y. Leng, "Dual-band dual-polarized compact bowtie antenna array for anti-interference MIMO WLAN," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1, 237-246, Jan. 2014.
doi:10.1109/TAP.2013.2287287

6. Su, S.-W. and C.-T. Lee, "Printed, low-cost, dual-polarized dual-loop-antenna system for 2.4/5GHz WLAN access points," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, 1653-1659, May 2011.
doi:10.1109/TAP.2011.2123070

7. Wong, K. L., H. C. Tung, and T. W. Chiou, "Broadband dual-polarize daperture-coupled patch antennas with modified H-shaped coupling slots," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 2, 188-191, Feb. 2002.
doi:10.1109/8.997993

8. Gao, S. C., L. W. Li, M. S. Leong, and T. S. Yeo, "Dual-polarized slot coupled planar antenna with wide bandwidth," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 3, 441-448, Mar. 2003.
doi:10.1109/TAP.2003.809842

9. Li, B., Y.-Z. Yin, W. Hu, Y. Ding, and Y. Zhao, "Wideband dual-polarized patch antenna with low cross polarization and high isolation," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 427-429, 2012.

10. Kaboli, M., S. A. Mirtaheri, and M. S. Abrishamian, "High-isolation X-polar antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 401-404, 2010.
doi:10.1109/LAWP.2010.2049557

11. Jia, T. and X. Li, "A compact stacked bidirectional antenna for dual-polarized WLAN applications," Progress In Electromagnetics Research C, Vol. 44, 95-108, 2013.
doi:10.2528/PIERC13082204

12. Moghadas, H. and M. Daneshmand, "Dual-band dual-polarized high-gain resonant cavity antenna," IEEE International Symposium Antennas and Propagation (APSURSI), 2246-2249, 2011.
doi:10.1109/APS.2011.5996963

13. Capobianco, A., F. M. Pigozzo, A. Assalini, M. Midrio, S. Boscolo, and F. Sacchetto, "A compact MIMO array of planar end-fire antennas for WLAN applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 9, 3462-3465, Sep. 2011.
doi:10.1109/TAP.2011.2161557

14. Chuang, H.-R. and L.-C. Kuo, "3-D FDTD design analysis of a 2.4-GHz polarization-diversity printed dipole antenna with integrated balun and polarization-switching circuit for WLAN and wireless communication applications," IEEE Trans. Microwave Theory and Technique, Vol. 51, 374-381, 2003.
doi:10.1109/TMTT.2002.807838

15. Cook, B. S. and A. Shamim, "Utilizing wideband AMC structures for high-gain inkjet-printed antennas on lossy paper substrate," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 76-79, 2013.
doi:10.1109/LAWP.2013.2240251

16. Kim, D., "Novel dual-band Fabry-Perot cavity antenna with low frequency separation ratio," Microw. Opt. Technol. Lett., Vol. 51, No. 8, 1869-1872, Aug. 2009.
doi:10.1002/mop.24509

17. Sauleau, R. and P. Coquet, "Input impedance of electromagnetic bandgap resonator antennas," Microw. Opt. Technol. Lett., Vol. 41, No. 5, 369-375, Jun. 2004.
doi:10.1002/mop.20144

18. Rodes, E., M. Diblanc, E. Arnaud, T.Monediere, and B. Jecko, "Dual-band EBG resonator antenna using a single-layer FSS," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 368-371, 2007.
doi:10.1109/LAWP.2007.902808

19. Wu, Z.-H. and W.-X. Zhang, "Broadband printed compound air-fed array antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 187-190, 2010.

20. Almeida Filho, V. A. and A. L. P. de Siqueira Campos, "Performance optimization of microstrip antenna array using frequency selective surfaces," J. Microw. Optoelectron. Electromagn. Appl., Vol. 13, No. 1, 31-46, 2014.
doi:10.1590/S2179-10742014000100003

21. Brito, D. B., A. G. d’Assun¸c˜ao, R. H. C. Mani¸coba, and X. Begaud, "Metamaterial inspired fabry-perot antenna with cascaded frequency selective surfaces," Microw. Opt. Technol. Lett., Vol. 55, 981-985, 2013.
doi:10.1002/mop.27531

22. Pirhadi, A., H. Bahrami, and J. Nasri, "Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 2101-2106, Apr. 2012.
doi:10.1109/TAP.2012.2186230

23. Moharamzadeh, E. and A. M. Javan, "Triple-band frequency-selective surfaces to enhance gain of X-band triangle slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1145-1148, 2013.
doi:10.1109/LAWP.2013.2281074

24. Kanjanasit, K. and C. Wang, "A high directivity broadband aperture coupled patch antenna using a metamaterial based superstrate," 2012 Loughborough Antennas & Propagation Conference, 1-4, 2012.
doi:10.1109/LAPC.2012.6403004

25. Pirhadi, A., M. Hakkak, F. Keshmiri, and R. K. Baee, "Design of compact dual band high directive electromagnetic bandgap (EBG) resonator antenna using artificial magnetic conductor," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1682-1699, Jun. 2007.
doi:10.1109/TAP.2007.898598

26. Ge, Y. and K. P. Esselle, "A resonant cavity antenna based on an optimized thin superstrate," Microw. Opt. Technol. Lett., Vol. 50, No. 12, 3057-3059, Dec. 2008.
doi:10.1002/mop.23898

27. Sun, Y., Z. N. Chen, Y. Zhang, H. Chen, and T. S. P. See, "Subwavelength substrate-integrated Fabry-P´erot cavity antennas using artificial magnetic conductor," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 30-35, Jan. 2012.
doi:10.1109/TAP.2011.2167902

28. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimized partially reflective surfaces," Proc. Inst. Elect. Eng. Microw. Antennas Propag., Vol. 148, No. 6, 345-350, Dec. 2001.
doi:10.1049/ip-map:20010828

29. Wang, D., W. Che, Y. Chang, K.-S. Chin, and Y. L. Chow, "A low-profile frequency selective surface with controllable triband characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 468-471, 2013.
doi:10.1109/LAWP.2013.2254459

30. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Norwood, MA, 2001.

31. Wang, S., A. P. Feresidis, G. Goussetis, and J. C. Vardaxoglou, "High gain subwavelength resonant cavity antennas based on metamaterial ground planes," IEE Proc. Microw. Antennas. Propag., Vol. 153, No. 1, 1-6, 2006.
doi:10.1049/ip-map:20050090